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Abstract—Researchers have used deep neural networks (DNN)
to reconstruct visual stimuli from human brain activities. In
particular, convolution neural networks (CNN) processing func-
tional magnetic resonance imaging (fMRI) signals can reconstruct
visual stimulation in brain activity. Although visual stimulation
has been successfully reconstructed in brain activity, the research
on visual stimulation reconstruction is still in initial stage. The
decoding model of brain activity based on fMRI is facing three
challenges: the mapping ability of the decoding model; the
limited paired data of visual stimulation and brain activity;
and the presence of noise in fMRI signals. This paper reviews
the potential solutions to the above difficulties and the future
development directions.

Index Terms—Brain Activity Decoding, Visual Reconstruction,
functional Magnetic Resonance Imaging, Deep Learning

I. INTRODUCTION

From the perspective of neuroscience and neuroimaging,
functional magnetic resonance imaging can be used to decode
human perception and semantic information of the cerebral
cortex in a non-invasive manner [1]. And the researchers have
decoded visual stimuli related to the activity of human brain
neurons from fMRI data successfully [2], [3], [4], [5], [6].

In recent years, the application of deep learning methods
in the field of computer vision, significant achievements have
been made in image restoration and image super-resolution.
And the structure of deep neural networks is similar to the
feedforward of the human visual system [7], it is not surprising
that DNN is used to decode the visual stimuli of brain activity
[8], [9]. For deep neural networks, especially convolutional
neural networks, researchers use pre-trained CNN to extract
features from fMRI data in the convolutional layer [10], [11],
[12]. Furthermore, the graph convolutional networks (GCN)
can consider the topological structure of the functional areas
of the brain to predict the cognitive state of the brain [13],
[14]. In the case of limited amount of fMRI data and image
paired data, the GCN-based decoding model can also provide
an automated tool for marking the cognitive state of the brain
[15]. Although previous studies on decoding visual stimuli in
brain activity have made great achievements in classification
and recognition, the performance of image reconstruction
needs to be improved [16].

The challenges to brain decoding can be summarized in
three dimensions: the limited ability of model mapping be-

tween brain activity and visual stimuli; there is not a large
amount of matching data between visual stimuli and brain
activity; fMRI signals are mixed with noise [16]. The fol-
lowing sections will propose potential solutions and future
development directions for the challenges faced.

II. MODEL MAPPING CAPABILITY
A. Multi-Voxel Pattern Analysis and Deep Learning

In recent years, the combination of multi-voxel pattern
analysis (MVPA) and deep learning is a popular method to
identify brain states. By using deep neural networks to decode
fMRI signals that record brain activity, the performance of
brain decoding has been further improved [9], [15]. Although a
decoding model based on MVPA has been proposed, the multi-
voxel pattern analysis decoding model has poor interpretabil-
ity, especially when the decoding model uses linear kernels
[17]. And this technique is susceptible to image artifacts
such as eye movement and cardiopulmonary artifacts [17].
Also, the speed of neuron vascular coupling, the sensitivity of
BOLD activity and the signal-to-noise ratio of fMRI signals
should also be considered. The efficiency of the algorithm
and the processing speed of the hardware should not only be
pursued, but should correspond to the blood coupling delay
in the brain [18]. Although the existing deep learning-based
decoding model has achieved satisfactory results [19]. In order
to obtain a higher-precision decoding model, there are still
many challenges in using deep learning to reconstruct the
corresponding visual stimuli from fMRI data.

B. Region of Interest and Feature Selection

The sample size of fMRI signals and image pairing is small,
and the dimensionality of fMRI signals is higher. When the
model is trained with limited high-dimensional data samples,
it is easy to produce the curse of dimensionality [17]. And
traditional methods are easy to overfit on small datasets [19].
The efficiency of deep learning-based models depends on the
number and reliability of training samples. A large number
of neural activities and corresponding types of images are
recorded. The quality and types of image reconstruction may
be improved [20], [21]. However, the running time of the
experiment should be proportional to the efficiency. It is
particularly important to select the key features that contribute
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the most to the image reconstruction, so it is necessary to
further improve the feature extraction ability of the decoding
model for neuroimaging data [9], [21]. It can learn from the
visual attention [22] and axiomatic attribution [23] methods
proposed in computer vision, used to determine which voxels
of neurons contribute the most to decoding visual stimuli.

In addition, the connection structure of the brain network
of human cognition has become one of the important goals
of neuroscience research [15]. The current decoding of brain
activity is usually limited to specific cognitive areas that hu-
mans understand, and it takes a relatively long time to collect
and record fMRI signals of brain activity [15]. Moreover, most
of the current deep learning-based research cannot simultane-
ously consider the functional dependence and time dynamics
between different regions of the brain [13]. In order to use the
dependency between the regions of the brain to decode the
brain, [13], [14], [15] have explored the use of GCN to predict
or annotate the cognitive state of the brain. Especially based on
the Spatio-Temporal Graph Convolution Networks (ST-GCN)
model, the representation extracted from the fMRI signal can
not only represent the temporal dynamic information of brain
activity but also the functional dependence between brain
regions, and has achieved success in the field of computer
vision [13]. This method of integrating the importance of the
edge of the map in the context of the spatio-temporal map may
have potential effects on the development of neuroscience [13].

C. Unsupervised Learning and Prior Knowledge

To fully learn abstract representations of brain activity in an
unsupervised way should be fully studied in the future [24].
Researchers’ exploration of unsupervised learning methods
led to the emergence of bidirectional generative models. For
example, variational auto-encoder (VAE) is an unsupervised
learning model. However, in the design process of the cor-
responding computing components of the VAE, the encoder
and the decoder are not related, but in the activities of the
cerebral cortex, the feedforward and feedback processes are
related [24]. In addition, VAE does not have the ability to
process dynamics and loops, but video information can be
transmitted in time and space [24]. Moreover, human brain
activity is dynamic, and reconstructing dynamic features from
brain activity is a huge challenge [16].

In addition, some researchers use a large number of image
priors to reconstruct visual stimuli [25]. But when there is a
prior condition to decode the brain activity, the decoder output
is a function of brain neuron activity and prior knowledge,
so it is impossible to specifically determine which informa-
tion of the brain is decoded [9]. Exploring the alternative
prior knowledge of brain decoding problems still requires
constant exploration by researchers [26]. In recent years, an
encoding model based on deep learning has also emerged,
which trains deep neural networks to perform some tasks
to learn representations that can predict neuronal activity
[27]. Specifically, the encoding model uses visual stimuli
to predict the neural response of the brain and serves as a
prior for the decoding model. The advancement of encode

technology has many important practical applications for brain
enhancement communication, machine and computer direct
brain control, and disease state monitoring and diagnosis [26].
This method of complementing encoding and decoding models
is a meaningful research direction [9].

III. LIMITED PAIRED FMRI AND IMAGE DATE
A. Few-shot Learning

Due to the high cost of fMRI research and the complicated
research process, the collection of paired fMRI signals and
image samples is also a difficult problem, so the number of
pairs of fMRI signals and images is small [17], [20], [28].
Also inspired by the field of computer vision, [20] proposed
few-shot learning for the decoding of brain activity. The
experimental report proves that this kind of few-shot method
is promising in solving the data problem of neural influence
[20]. There are currently three main ways to learn few-shot:
representation-based paradigm, initialization-based paradigm,
and illusion-based paradigm [20].

Representation-based paradigm: This method aims to learn
the representation of fMRI signals. This method regards the
first layer of the neural network as a feature extractor and
the last layer as a classifier. A large amount of training data is
used to train the neural network to extract relevant hidden rep-
resentations and complete the training of the classifier. Later,
when processing small sample data, the classifier extracts a
small amount of data characterization according to the feature
extractor to complete the classification of the new data [20].

Representation based on initialization: This method is also
called meta-learning, and the idea of meta-learning is to learn
how to learn. This method aims to learn good initialization
parameters so that the model can cope with various new
datasets. In the process of meta-learning, the previous neural
network can be understood as a low-level neural network, and
the meta-learner is used to optimize the weights of the low-
level neural network. The meta-learner inputs a list of samples
and their corresponding labels. When training the meta-learner,
the meta-loss (the error value of the prediction and the target
label) can be used to measure the performance of the meta-
learner on the target task. Then, another meta-learner is needed
to update the weight of the current meta-learner [20].

Paradigm based on illusion: This method is to perform a
series of deformation operations such as rotation or combi-
nation of samples in the original datasets to increase training
examples [20].

B. Transfer Learning

When the amount of data is limited and the prior knowledge
is sufficient, sometimes the functions designed by hand are
better than the neural networks model learned from the data
[9]. At present, the model based on deep learning is ready. As
the amount of data in the fMRI datasets continues to increase,
the future direction is not to manually design functions, but
to learn more functions based on data driving [9]. In the field
of neuroimaging, there is always a lack of datasets with large
enough samples for specific experiments [29]. Most of the
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current transfer learning is to learn the data representation of
the image in ImageNet, and then build a model to adjust the
medical image [30]. Although transfer learning can effectively
make up for the shortcomings of insufficient training data,
natural images and medical images are still different in nature
[29]. For example, Gabor filters are often used for edge
detection of natural images, but have never been used in
medical images [29].

More and more studies have shown that the human cognitive
system is a function of multiple functional areas of the brain
[31]. [29] used a large number of different experimental tasks
and medical imaging datasets of experimental environments
for training based on graph convolutional network models.
The experimental report shows that the dynamics of the brain
are transferable between different brain regions and differ-
ent cognitive domains, and even between different scanning
sequences. Through fine-tuning, on the basis of preserving
the low-level representation of brain dynamics, learn more
about the high-level representation of brain functional areas
[15]. [15] proved that transfer learning can not only improve
decoding performance, but also shows a potential role in
neuroimaging.

C. Graph Convolutional Networks

If CNN is not trained, no effective features can be obtained
at all. Even if GCN is not trained, it completely uses randomly
initialized parameters, and the features extracted by GCN
are very effective [32]. If labeling information is given, the
effect of GCN will be even better [32]. Compared with
other classifiers, the graph convolutional networks has better
performance on a limited dataset [20]. The fMRI signals can
represent the spatial structure of brain activity, and the graph
neural networks (GNN) can take the connectivity of the brain
into account to decode brain activity, which has the potential
to solve the problem of limited data [15], [20], [33], [34].

IV. THE EFFECT OF FMRI NOISE
A. Hemodynamic Delay

The spatial resolution of functional magnetic resonance is
very high, but its time resolution is relatively limited. It can
only collect the average activity level in about two seconds,
and there is a certain delay in the detection of neural activity
[35]. The fMRI signals contains the position information
in the brain voxels, but due to its limited time resolution,
sometimes the time series can not be used to decode brain
activity [9]. Because of the neurovascular coupling, the fMRI
response is after the neurological response [24]. Therefore,
at the stage of decoding fMRI signals into latent variables of
visual stimulation, the delay of neurovascular dynamics should
also be considered [24].

B. Brain Cognitive Limitation

Due to the high cost of fMRI research and the complex
research process, fMRI-based brain-computer interface (BCI)
learns the self-regulation ability of brain region in the way
of neural feedback (NF), and then it can be transferred to

the more flexible and lower cost electroencephalogram brain-
computer interface [36], [37]. Combine variational autoen-
coder and generative adversarial networks (GAN), use fMRI
data to supplement electroencephalogram (EEG) data, and
encode condition vectors with less noise [38]. In addition
to decoding low-level visual stimuli, researchers also de-
code brain activity into low-level pixel space and high-level
semantic space at the same time [39], [40], [41]. Due to
the inadequacy of human research on visual mechanism, the
current reconstruction field is exploratory. In the reconstruction
process, the decoded noise may be the true prediction of the
cerebral visual cortex’s response to the outside world, and the
clear image reconstructed by the reconstruction algorithm may
also be noise [42].

V. CONCLUSION

Although researchers have successfully reconstructed the
input visual stimuli from fMRI data, they are still in the
initial stage of reconstruction. This paper reviews the current
decoding methods of brain activity based on fMRI, which
mainly face three challenges: mapping ability of decoding
model; limited paired fMRI and image data; fMRI signals
are mixed with noise. This paper also reviews the potential
solutions to the above challenges in computer science and neu-
roscience. With the advancement of brain signal measurement
technology, the development of more complex encoding and
decoding models, and a better understanding of brain structure,
"mind reading" will become a reality.
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