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• A novel data sensing and fusion scheme GM–KRLS is proposed in WSNs for the CPSs.
• GM–KRLS develops a prediction mechanism to reduce redundant transmissions in WSN.
• GM–KRLS improves the prediction accuracy with a kernel machine learning algorithm.
• Blowfish algorithm is employed to guarantee the confidentiality in our scheme.
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a b s t r a c t

Wireless sensor networks (WSNs) as one of the key technologies for delivering sensor-related data drive
the progress of cyber-physical systems (CPSs) in bridging the gap between the cyber world and the
physical world. It is thus desirable to explore how to utilize intelligence properly by developing the
effective scheme in WSN to support data sensing and fusion of CPS. This paper intends to serve this
purpose by proposing a prediction-based data sensing and fusion scheme to reduce the data transmission
and maintain the required coverage level of sensors in WSN while guaranteeing the data confidentiality.
The proposed scheme is called GM–KRLS, which is featured through the use of grey model (GM), kernel
recursive least squares (KRLS), and Blowfish algorithm (BA). During the data sensing and fusion process,
GM is responsible for initially predicting the data of next period with a small number of data items,
while KRLS is used to make the initial predicted value approximate its true value with high accuracy. The
KRLS as an improved kernel machine learning algorithm can adaptively adjust the coefficients with every
input, while making the predicted value more close to actual value. And BA is used for data encoding
and decoding during the transmission process due to its successful applications across a wide range of
domains. Then, the proposed secure data sensing and fusion schemeGM–KRLS canprovidehighprediction
accuracy, low communication, good scalability, and confidentiality. In order to verify the effectiveness and
reasonableness of our proposed approach, we conduct simulations on actual data sets that are collected
from sensors in the Intel Berkeley research lab. The simulation results have shown that the proposed
scheme can significantly reduce redundant transmissions with high prediction accuracy.
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1. Introduction

A cyber-physical system (CPS) as an integration of sensors net-
works with cyber resources responds intelligently to dynamic
changes in physical world, where the wireless sensor networks
(WSNs) as one of the key components collect sensor data from
physical environment [1]. With the increasing presence and adop-
tion of WSNs on the deployment of CPS, there has been a grow-
ing demand in data sensing and data fusion to utilize intelligence
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Nomenclature

κ = the kernel function
u, v = the input vector of kernel function
ζ = the kernel parameter
λ = the regulation parameter of kernel recursive least

squares (KRLS)
β = the forgetting factor of KRLS
P = P-array of Blowfish algorithm (BA)
S = S-box of BA
F = F-function of BA
ε = the threshold of prediction error
e(i) = the prediction error at time i
n = the length of the original data sequence
q = the number of the data sequences
xS(i) = the data sequence of the ith period for sensor node
xK (i) = the data sequence of the ith period for sink nodexS(i) = the predicted data sequence of the ith period

properly of CPS. Then, by integrating WSNs from different do-
mains, CPS has emerged as a promising direction to enrich the
interactions between physical and virtual worlds [2,3]. A WSN
is composed of spatially distributed autonomous sensors used to
cooperatively monitor physical or environmental data, such as
temperature, humidity, light, noise, pressure, speed, andmanyoth-
ers [4]. WSNs can be used to data sensing, disposing, and trans-
mitting [5]. While WSNs are employed for real-time monitoring,
plenty of sensor nodes sense the data of fluctuant monitored ob-
jects within a valid range and send those data to the sink node and
end-users [6,7]. More recently, WSNs have demonstrated many
successful applications across a wide range of domains, such as
military affairs, national security, national defense, environment
monitoring, energy management, and so on [8]. Thus, they are one
of the key technologies to support sensing and actuation of CPS.
WSNs are becoming amultidisciplinary research area attracting re-
searchers from different fields especially industrial area.

InWSNs, the powermodule provides energy for nodes and once
the nodes are deployed in many applications, it is almost impos-
sible to recharge them. It is known that the process of wireless
communication consumes most of the energy [9]. Since the data
generated by sensor nodes during continuous sensing periods usu-
ally are of high temporal coherence, some data in the sustaining
data sequence may be redundant, while causing unnecessary data
transmission and wasting energy. The prediction-based data sens-
ing and fusion schemes therefore have been proposed to process
original data in the sensor nodes and reduce unnecessary trans-
missions [10]. To achieve the goal of extending the lifetime of the
whole network, those schemes fully utilize the high temporal co-
herence of the sensed data to lessen the redundant transmissions
and save the energy of sensor nodes [11,12]. In addition, since some
problems like information leakage exist during the data transmis-
sion, the security of data is also one of the key issues in WSNs.

Among the known data sensing and fusion methods, a delay-
aware network structure for WSNs with in-network data fusion
was proposed in [13]. The proposed structure organizes sensor
nodes into clusters of different sizes so that each cluster can com-
municate with the fusion center in an interleaved manner. How-
ever, it cannot achieve the best effectiveness without knowing the
minimum achievable compression ratio between the sizes of in-
coming and outgoing data. For different data sensing and fusion
topologies (e.g., star, chain, and tree), the optimal solutions were
provided while computing the number of transmissions for each
node in [14]. The distributed approximation algorithms were also
presented for chain and tree topologies, but the model may be
more complex as the size of the network increases. In [15], a dis-
tributed sensor fusion method was designed using a tree-based
broadcasting strategy to improve the estimation efficiency and ac-
curacy in WSN. Through the use of genetic machine learning al-
gorithms, an implementation for data fusion techniques in WSNs
was developed [16]. A quality-based multiple-sensor fusion ap-
proach was proposed in WSN [17]. However, there is also some
improvement for thesemethods when the data set inWSN is more
complex. In [18], the authors proposed a prediction-based tem-
poral data fusion technique through the use of a first-order auto-
regressive model. However, the prediction accuracy of this model
is poor when the time series data set is few or nonlinear [19].

In order to avoid those limitations that existed in the above
data fusion approaches, some novel prediction-based data sensing
and fusion schemes were presented with the help of grey model
(GM) [20]. For instance, in [21], the authors presented a scheme
GM-LSSVM. It implements the initial prediction using GM, and
then utilizes the powerful nonlinear mapping capability of least
squares support vector machine (LS-SVM) to improve the pre-
diction accuracy. LS-SVM is established using the structural risk
minimization principle rather than the empirical error commonly
implemented in the neural networks. Then, LS-SVM can achieve
higher generalization performance and higher precision accuracy
than neural networks. But almost all of nonlinear series system
identification by LS-SVM is offline, and itsmodel is trained periodi-
cally. It imposes a challenging obstacle while using LS-SVM to con-
duct the prediction for nonlinear time series online. Moreover, in
GM-LSSVM, it just employs the predictionmechanism in all sensor
nodes, then the sink node could not get any data at some sampling
periods. Therefore, this scheme cannot guarantee that the end-
users are able to obtain the sensed data in every sampling point,
and it is infeasible in most real-time monitoring applications.
Motivated by [22], a novel scheme GM-OP-ELM through the
combination of GM and optimally pruned extreme learning ma-
chine (OP-ELM) was proposed in [23]. Compared with GM-LSSVM,
the computing speed of GM-OP-ELM improves greatly. With this
scheme, prediction time can be saved immensely, but in some sit-
uations its accuracy may be lower than GM-LSSVM.

To improve the prediction accuracy and guarantee the trans-
mission confidentiality, a novel prediction-based secure data sens-
ing and fusion scheme using GM, kernel recursive least squares
(KRLS), and Blowfish algorithm (BA) is proposed in this paper to
reduce the redundant transmission inWSNs. This scheme is called
GM–KRLS. During the data sensing and fusion process, both the
sink node and the sensor nodes must use the same small num-
ber of recent data items and prediction mechanism to predict the
data of the next period,while guaranteeing that the data sequences
in the sink node and the sensor nodes are synchronous. Then the
end-users can get the accurate data of all sensor nodes from the
sink node in every sampling period. When the prediction error is
under the threshold defined by end-users, the sensor node does
not need to send the sensed data to the sink node, then both the
sink node and sensor node will consider the predicted data as the
sensed data in this period, otherwise the transmission between the
sensor nodes and sink node will happen while encoding and de-
coding data based on BA [24,25]. In this way, unnecessary trans-
mission is canceled to achieve the goal of secure data sensing and
fusion. Moreover, in order to reduce the computational complexity
and improve the accuracy of the prediction algorithm with small
number of data items, the proposed scheme employs GM to obtain
the initial predicted value, then with the help of KRLS learning al-
gorithm [26], our scheme makes the predicted value approximate
its actual value with high accuracy.

Through kernel function, KRLS puts original and nonlinear in-
puts into high-dimensional space to make them linear. It provides
a generalization of linear adaptive algorithm. As KRLS exhibits a
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growing memory structure embedded in the weight coefficients,
it naturally creates a growing radial-basis function network, while
learning the network topology and adapting the free parameters
directly from data at the same time. Compared with kernel least
mean square (KLMS) algorithm as a typical kernel method, KRLS
as an improved kernel machine learning algorithm has its unique
features where the learning rule is a beautiful combination of
the error-correction andmemory-based learning [27,28]. Although
KRLS andKLMSwork in a similarway under error-correction learn-
ing scheme, the former aims atminimizing the sumof squared esti-
mation errors and the latter aims at minimizing the instantaneous
value of the squared estimation. The convergence rate of KRLS is
therefore relatively faster than that of KLMS. In consideration of the
above reasons, we choose KRLS for data prediction in our scheme,
and GM–KRLS may achieve a high-accuracy data sensing and fu-
sion with fast computing speed.

The rest of this paper is organized as follows. The related
works are analyzed in Section 2. Section 3 describes the detailed
secure data sensing and fusion scheme GM–KRLS. The simulation
results and discussions are provided in Section 4. The conclusion is
summarized in Section 5.

2. Related works

2.1. Grey model- (GM-) based prediction method

The grey system represents a system in which the information
about it is poor, incomplete, or uncertain. Under the system anal-
ysis scheme using GM, it can use only a few data to estimate an
unknown system [29]. Meanwhile, the GM is featured by a first-
order differential equation used to characterize the system behav-
ior. Since the storage ability of a sensor node is limited, it is not
easy to provide complete information for the wholeWSN. It there-
fore can be treated as a grey system with uncertain or incomplete
information in the process of data sensing and fusion.

As a single variable first-order model, GM(1,1) is the most
commonly used greymodel. In this paper, it is employed to conduct
the initial prediction for those nodes in WSN. The prediction
procedure of GM(1,1) can be summarized as follows [30,31]:

(1) Define the original positive data sequence as follows:

x(0)
=


x(0)(1), x(0)(2), . . . , x(0)(k), . . . , x(0)(n)


, (1)

where x(0)(k) is the time series data at time k, and n represents
the length of the data sequence.

(2) Generate a new sequence x(1) by the accumulated generating
operation (AGO) for the initial sequence x(0):

x(1)
=


x(1)(1), x(1)(2), . . . , x(1)(k), . . . , x(1)(n)


, (2)

where

x(1)(k) =

k
i=1

x(0)(i), k = 1, 2, . . . , n.

(3) Form the first-order differential equation for x(1)(k) from x(1):

∂x(1)(k)
∂k

+ ωx(1)(k) = ϑ, (3)

whereω is the development coefficient, andϑ denotes the grey
input.

(4) Use the ordinary least squares (OLS) method to estimate the
grey parameters ω and ϑ in (3):ωϑ


= (νTν)−1νTϱ, (4)
where ω and ϑ are the estimated grey parameters, respec-

tively. Moreover, ν =


−

1
2


x(1)(2) + x(1)(1)


−

1
2


x(1)(3) + x(1)(2)


.
.
.

1
2


x(1)(n) + x(1)(n − 1)



1
1
.
.
.
1

, and

ϱ = [x(0)(2), x(0)(3), . . . , x(0)(n)]T.

(5) Obtain the predictive function by solving (3) and using the
estimated parameters in (4):

x(1)(k) =


x(0)(1) −

ϑω

e−ω(k−1)

+

ϑω, k = 1, 2, . . . (5)

wherex(1)(k) is the predicted value of x(1)(k) at time k. Then,
the predicted valuex(0)(k) at time k is:

x(0)(k) =x(1)(k) −x(1)(k − 1) (6)

wherex(1)(0) is set to 0.

Recently, some extension and optimization for GM(1,1) have
been conducted and new grey prediction models were developed,
such aswhitenization-basedmodel GM(1,1,Whi) [32], interval grey
prediction model considering uncertain information [33].

2.2. Kernel recursive least square (KRLS) learning algorithm

Adaptive algorithms can adjust their coefficients dynamically
to adapt to the signal statistics in accordance with optimization
algorithms. Consider an adaptive algorithm with M adjustable
coefficients

y(i) = w(i)Tu(i) (7)

where u(i) = [u(i − D), u(i − D − 1), . . . , u(i − D − M + 1)]T
is the input vector, w(i) = [w0(n), w1(n), . . . , wM−1(n)]T is the
coefficient vector, y(i) denotes the output value, and D is the
prediction delay (D ≥ 1).

Then the error sequence e(i) can be formed as below:

e(i) = d(i) − y(i) (8)

where d(i) is a desired output and e(i) can be used in optimization
algorithms for updating the coefficients.

As the adaptive algorithms in kernel spaces with improved
performance, kernel adaptive algorithms have been proposed in
recent years. The kernel version of the recursive least square (RLS)
is given as below.

Let κ(u, v) be the kernel function. And the Gaussian kernel is
defined as:

κ(u, v) = e−ζ∥u−v∥2 (9)

where u and v are input vectors for kernel function, and ζ is a
kernel parameter.

To derive RLS in reproducing kernel Hilbert space (RKHS), we
utilize the Mercer theorem to transform the data u(i) into the
feature space F as ϕ(u(i)) (denoted as ϕ(i)) [27]. We formulate
the RLS algorithm on the example sequence {d(1), d(2), . . .} and
{ϕ(1), ϕ(2), . . .}. At each iteration, the weight vector w(i) is the
optimization solution of

min
w

=

i
j=1

β i−j
| d(j) − wTϕ(j) |

2
+β iλ∥w∥

2 (10)

where λ is the regulation parameter, and β is the forgetting factor.
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Algorithm 1: KRLS
Input: The original input data set u(i)

The desired output data set d(i)
Output: The predicted data set y(i)

1 χ(1) = (λβ + κ(u(1), u(1)))−1, a(1) = χ(1)d(1), i = 1
2 While u(i) is available do
3 Calculate the output:
h(i) = [κ(u(i), u(1)), · · · , κ(u(i), u(i − 1))]T,
y(i) = (h(i))Ta(i − 1)

4 Calculate the error: e(i) = d(i) − h(i)Ta(i − 1)
5 Update the coefficients: z(i) = χ(i − 1)h(i),
r(i) = β iλ + κ(u(i), u(i)) − (z(i))Th(i),

χ(i) = r(i)−1


χ(i − 1)r(i) + z(i)(z(i))T −z(i)
−(z(i))T 1


,

a(i) =


a(i − 1) − z(i)(r(i))−1e(i)

(r(i))−1e(i)


6 i = i + 1
7 End while

By introducing

d(i) = [d(1), . . . , d(i)]T (11)
φ(i) = [ϕ(1), . . . , ϕ(i)]. (12)

We have

w(i) = [β iλI + φ(i)ς(i) (φ(i))T]−1φ(i)ς(i)d(i) (13)

where ς(i) = diag{β i−1, β i−2, . . . , 1}.
Furthermore, by using the matrix inversion lemma, (13) can be

rewritten as

w(i) = φ(i)[β iλ(ς(i))−1
+ (φ(i))T φ(i)]−1d(i). (14)

Theweight is explicitly expressed as a linear combination of the
input data:

w(i) = φ(i)a(i)

with

a(i) = [β iλ(ς(i))−1
+ (φ(i))Tφ(i)]−1d(i). (15)

Denote

χ(i) = [β iλ(ς(i))−1
+ (φ(i))Tφ(i)]−1 (16)

χ(i) can be expressed as follows:

χ(i) = (r(i))−1

χ(i − 1)r(i) + z(i)(z(i))T −z(i)

−(z(i))T 1


(17)

where

z(i) = χ(i − 1)h(i) (18)

r(i) = β iλ + κ(u(i), u(i)) − (z(i))Th(i) (19)

and a(i) can be calculated as follows:

a(i) =


a(i − 1) − z(i)(r(i))−1e(i)

(r(i))−1e(i)


. (20)

KRLS algorithm can be summarized in Algorithm 1. As defined
in this algorithm, a is a set of coefficients of the kernel expansion.

Furthermore, some improvements on the basis of such basic
KRLS have been achieved. For instances, by incorporating an
online vector quantization method [28] or a forgetting technique
in Bayesian inspired framework [34], the learning performance
of KRLS can be improved. Then, those KRLS algorithms are
particularly applicable to cases in which data arrives sequentially.
From this point of view, this learning algorithm may have great
potential to address our discussed issue in this paper.
Fig. 1. Schematic diagram of Blowfish algorithm.

2.3. Blowfish algorithm (BA)

Every sensor node has a secret key which differs from other
nodes. The sink node will generate a session key at the beginning
and broadcast it to all sensor nodes. The sensor node will calculate
Needham–Schroeder symmetric key (NSSK)with its secret key and
the session key for data encoding and decoding of this sensor node.
Since the sink node knows all the secret keys of sensor nodes, it
could calculate NSSKs to decode the data. Data transmissions be-
tween sink node and sensor nodes employ BA for encryption [35].
One run of data sensing, fusion, and transmission is listed as below:

(1) The sensor node senses data and employs the data sensing and
fusion scheme to data prediction and fusion.

(2) If the prediction error is below the threshold, both the sink
node and sensor nodes consider the predicted data as actual
data, and transmission is canceled. Otherwise, sensor node
sends the actual data to sink node.

(3) For the data that need to be sent, the sensor node employs
NSSK for encoding.

(4) The sink node calculates NSSKs of sensor nodes and decodes
data.

Bruce Schneier designed the BA which can be available in the
public domain [24]. Since BAwas first introduced in 1993, it has not
been cracked yet, where Blowfish is a variable length key with 64-
bit block cipher. From the application side, BA has demonstrated
many successful applications across a wide range of domains.

As shown in Fig. 1 [25], there are two parts of BA, i.e., the
key expansion and the data encryption. The key expansion of BA
begins with the P-array and S-box through the utilization of many
sub-keys, while it converts a key of at most 448 bits into several
sub-key arrays with 4168 bytes. Meanwhile the data encryption
is implemented through a 16-round network, where a key-
dependent permutation and a key-dependent and data-dependent
substitution are conducted in each round. All of the operations
include XOR and additions on 32-bit words. Here, the F-function
of BA is probably the most complex part of this algorithm because
it is the only part of utilizing the S-box. More recently, to simplify
the precessing complexity, a novel F-function was designed to
generate dynamic S-box and XOR operator [36], and a newmethod
was also developed to generate S-box and P-array [37].

Considering those features of above surveyed algorithms, it
may be an innovative case through the integration of those
three methods in our proposed scheme. Specifically, compared
with other existing data fusion methods in WSNs, the proposed
method has some unique advantages. Our contributions could be
summarized as follows. Firstly, we employ GM to reduce random
errors while using KRLS to improve the prediction accuracy due
to its powerful nonlinear mapping ability, and the combination of
GM and KRLS is novel in kernel methods. Secondly, to guarantee
data security, both the sink node and sensor node use the same



X. Luo et al. / Future Generation Computer Systems 61 (2016) 85–96 89
Fig. 2. Schematic diagram of the proposed data sensing and fusion scheme.

prediction mechanism to reduce redundant data transmission,
meanwhile BA is introduced for data encoding and decoding.
Thirdly, we use small number of recent data to predict the data
of next period in data fusion scheme, thus, the increase of data set
may not influence the prediction effect. In this case, the proposed
method may be effective in addressing some big-scale data sets.

3. Secure data sensing and fusion scheme GM–KRLS

3.1. The scheme GM–KRLS

In consideration of the limited energy and storage as well as
data security in sensor nodes,wepresent a prediction-based secure
data sensing and fusion scheme GM–KRLS to reduce redundant
data transmission, save energy with low computational cost, and
keep the data confidentiality. To guarantee that the data series
in the sink node and the sensor nodes are synchronous in every
period while conducing the data sensing and fusion, both the
sink node and the sensor nodes should employ the same data
sequence and prediction mechanism [19]. Then the end-users can
get the data of every sampling point in sensor nodes with low
communication cost.

In the secure data sensing and fusion scheme, the data of the
next period is predicted through our proposedmethod. The sensor
node compares the sensed data with the predicted data. If the
error between them is under the threshold ε, it is unnecessary for
the sensor node to send the data to sink node, and the energy is
saved, while achieving the goal of data fusion. Meanwhile, the sink
node also employs the same prediction mechanism to predict the
data of next period, and then considers the predicted data as the
sensed data in current period. Furthermore, the sensor node should
transmit the sensed data to sink node through the use of BA for
encoding when the prediction error is beyond the threshold ε. It
should be pointed out that ε is defined by end-users and it can
be adjusted. Then the prediction accuracy will be influenced with
different values of ε.

To improve the prediction accuracy through the use of a
few sample data items, in this paper, after obtaining the initial
predicted data sequence via GM, the proposed method employs
KRLS to make this predicted sequence approximate its actual
value. Thus the proposed secure data sensing and fusion scheme
is presented in Fig. 2 and detailed description is listed as follows.

(1) The sink node sends its acceptable prediction error threshold ε
and the session key to all sensor nodes. In the first n periods, all
sensor nodes transmit their sensed data to the sink node and
calculate NSSKs with their keys and the session key. Then they
construct the initial predicted data sequence.

(2) Both the sink node and sensor node conduct prediction using
the same data sequence and prediction mechanism. With the
initial predicted data sequence of size n, a new data sequence
of size (n + 1) can be obtained via GM(1,1).
Fig. 3. The flowchart of scheme GM–KRLS.

(3) Train KRLS model with the initial predicted data sequence
and the first n values of new data sequence being its input
and output, respectively. And then the hidden relationships
between those data sequences, i.e., the weight vector of KRLS,
can be obtained.

(4) With the hidden relationships obtained above, the KRLS
algorithm takes the (n + 1)-th value of new data sequence
generated by GM as input, and the predicted value of next
period, i.e., the output of KRLS, could be obtained.

(5) The sensor node senses the actual data of next period.
(6) Calculate the error between the actual data and the predicted

data of next period.
(7) Compare the error with the threshold ε. If the error is less than

ε, which means the error is acceptable, the sensor node does
not send data to sink node. Meanwhile, both the sink node and
sensor node think of the predicted value as the actual value.
Otherwise, the sensor node sends the actual value to sink node
using BA. Reconstruct new data prediction sequence.

(8) Specifically, if the sensor node does not send the data to the
sink node within a fixed time T , the sensor node should send a
beacon to the sink node. Loop (2)–(8) with new data sequence.

On thewhole, the proposed data sensing and fusion scheme can
be summarized in Fig. 3.

3.2. Complexity analysis

We give an analysis on time complexity of our proposed secure
data sensing and fusion method. Let q be the number of samples
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Fig. 4. The distribution of the sensor nodes in Intel Berkeley research lab.
in the proposed scheme. It is obvious that the main computation
of our method is spent on GM(1,1) and KRLS learning. For every
data sequence in GM, it will conduct calculations for n times to
generate the new data sequence where n denotes the length of the
original data sequence. And q data sequences will be generated in
the whole prediction process. Thus, the computational complexity
of GM(1,1) is O(qn). Similarly, for every training process of KRLS,
the number of timeswe perform calculations equals the number of
input vectors (i.e., n). Each input vector is used for calculating the
coefficients of KRLS which could identify the relationship between
input and output. Meanwhile, KRLS will be trained q times. The
learning complexity of KRLS is also O(qn) [27,38]. Thus, we can
conclude that the complexity of our proposed scheme GM–KRLS
is O(qn).

4. Simulation results

In order to verify the effectiveness of the proposed data sensing
and fusion scheme in WSN, three actual data sets are imported for
simulation. We evaluate the performance of scheme through pre-
diction results and the successful prediction rate. GM is the basis of
GM-LSSVM, GM-OP-ELM, and GM–KRLS. GM-LSSVM and GM-OP-
ELM seem to perform better than GM, however, they all have their
own defects. GM-LSSVM spends much time in computation, and
GM-OP-ELM may have a worse prediction accuracy in some situa-
tions although its computational speed is quite fast. Therefore, in
order to evaluate the computational efficiency and prediction ac-
curacy of those schemes, we conduct simulations of our method
compared with GM, GM-LSSVM, and GM-OP-ELM. All the simula-
tions are conducted in MATLAB computing environment running
in an Intel(R)Core(TM)i5-2410M, 2.30GHzCPU.Here the algorithm
LS-SVM designed in GM-LSSVM scheme is implemented by using
a MATLAB Toolbox LS-SVM [39,40].

The actual data sets are collected from 54 sensors deployed
in the Intel Berkeley research lab, and those sensors in the lab
are distributed in accordance with Fig. 4 [41]. This distribution of
sensor nodes and the collected data sets is not only applied for
theoretical research, they also have strong practicality in industrial
area. Each sensor node collects the humidity, temperature, light,
and voltage values once every 31 s. Humidity is measured by
relative humiditywhich is the product of the actual humidity value
and 100. Light is in Luxwhere 1 Lux corresponds tomoonlight, 400
Lux corresponds to a bright office, and 100,000 Lux corresponds to
full sunlight.We randomly choose a sensor node for the simulation
and only its temperature, humidity, light data are employed. Since
the voltage is always going on a downward tendency, it is not
necessary to predict it. Each data set is extracted from the original
temperature, humidity, and light data streams. It includes 2000
continuous data items used in the following simulations. In our
simulations, we choose the first 40 sampling points of each data
set to construct the initial predicted data sequence. It means that
n defined in Section 3 is set to 40, and we conduct predictions
for the following 1960 sampling points. In the proposed scheme,
ε represents the requirements of end-users on data accuracy.
Therefore, in our simulations,we test the successful prediction rate
and the communication overhead of sensor node under different
threshold ε.

4.1. Results of temperature data set

The parameters of KRLS are set as follows: kernel parameter
ζ = 0.01, regularization parameter λ = 0.0008, and forgetting
factor β = 0.8. The prediction results of the temperature data
sequence are shown in Fig. 5 when ε = 0.17. This figure shows
that the prediction values by using GM-LSSVM, GM-OP-ELM, and
GM–KRLS schemes with the actual sensed data. It can be observed
that the prediction values of these three methods are in good
agreementwith the actual values, whichmeans they could achieve
a good prediction effect. However, in some sampling points, the
predicted values of GM-LSSVM and GM-OP-ELM vary hugely with
a worse prediction effect. Thus it is clear that the performance of
GM–KRLS is better than that of others.

In addition, it is optional for choosing the threshold ε. In Fig. 5
we choose the threshold as ε = 0.17, and it is nearly in the middle
of the range we have set. Actually, we could change the value of
ε, then the related simulation is also conducted when ε = 0.33
and the similar results are obtained in Fig. 6. It can be found that
the prediction performance with ε = 0.33 is worse than that with
ε = 0.17. Generally speaking, a smaller threshold means a high-
quality prediction process with a smaller predicted error, and it
also means a smaller successful prediction rate with more data
transmission inWSN. After performing many runs for our method,
we find in our simulation, 0.17 is a proper choice for the threshold
considering the practical requirement of trade-off between the
prediction effectiveness and the amount of transmitted data.

Fig. 7 shows the successful prediction rate as the threshold ε
changes. From this figure, it can be observed obviously that the
bigger the value of the threshold is, the higher the successful
prediction is. Furthermore, as the threshold changes, the successful
prediction rate of GM–KRLS is always higher than that of other
methods, which means that GM–KRLS has the best prediction
effect. Meanwhile, it is known that the higher the successful
prediction rate is, the less communication the overhead will
produce. That is the goal of data sensing and fusion. Thus, it is
obvious that the GM-OP-ELM and GM-LSSVM schemes outperform



X. Luo et al. / Future Generation Computer Systems 61 (2016) 85–96 91
Fig. 5. Prediction results of GM-OP-ELM, GM-LSSVM, and GM–KRLS schemes for
temperature items (ε = 0.17).

Fig. 6. Prediction results of GM-OP-ELM, GM-LSSVM, and GM–KRLS schemes for
temperature items (ε = 0.33).

GM-based scheme. It means that the GM-OP-ELM, GM-LSSVM,
and GM–KRLS schemes can save the energy by improving the
prediction accuracy, and extend lifetime of the whole WSN
simultaneously. Moreover, GM–KRLS seems to perform better in
dealing with this issue.

Fig. 8 shows the corresponding average error of these three
schemes when the threshold ε changes. The average error can be
used to evaluate the performance ofmethod, and a smaller average
error indicates a better prediction effect. It can be found that the
average errors of GM–KRLS areminimumand the errors of GM-OP-
ELM are maximum. Thus the overall prediction effect of GM–KRLS
is best. Specifically, Fig. 9 shows the predicted error of GM–KRLS at
every sampling pointwhen ε = 0.17.We can find that these errors
are constrained within relatively tight bounds.

4.2. Results of humidity data set

The parameters of KRLS are set as follows: kernel parameter
ζ = 0.03, regularization parameter λ = 0.0008, and forgetting
factor β = 0.8. Fig. 10 depicts the actual humidity data of every
sampling point and the prediction results using GM-OP-ELM, GM-
LSSVM, and GM–KRLS schemes when ε = 0.17. It is clear that the
prediction values of three schemes almost follow the actual sensed
Fig. 7. Successful prediction ratewith different threshold of GM, GM-OP-ELM, GM-
LSSVM, and GM–KRLS schemes for temperature item.

Fig. 8. Average predicted error with different threshold of GM-OP-ELM, GM-
LSSVM, and GM–KRLS schemes for temperature item.

Fig. 9. The predicted error of GM–KRLS scheme for temperature item (ε = 0.17).

humidity data. Fig. 11 shows the successful prediction rate under
different threshold ε. The successful prediction rate of GM-OP-ELM
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Fig. 10. Prediction value of GM-OP-ELM, GM-LSSVM, and GM–KRLS schemes for
humidity items (ε = 0.17).

Fig. 11. Successful prediction rate with different threshold of GM, GM-OP-ELM,
GM-LSSVM, and GM–KRLS schemes for humidity item.

is close to that of GM-LSSVM for the humidity data sequence, and
GM–KRLS has a higher successful rate than other schemes.

Here Fig. 12 shows the corresponding average error of these
three schemes when the threshold ε changes. Fig. 13 shows the
predicted error of GM–KRLS at every sampling point when ε =

0.17.

4.3. Results of light data set

The parameters of KRLS are set as follows: kernel parameter
ζ = 0.01, regularization parameter λ = 0.5, and forgetting factor
β = 0.8. Fig. 14 displays the actual light sensed data and prediction
value using GM-OP-ELM, GM-LSSVM, and GM–KRLS schemes at
every sampling point when ε = 0.17. It can be seen that this data
sequence is nonlinear. Fig. 15 shows the successful prediction rate
under different threshold ε of GM, GM-OP-ELM, GM-LSSVM, and
GM–KRLS schemes for light data sequence. As we can see from
this figure, the GM–KRLS also slightly outperforms GM-LSSVM
and GM-OP-ELM for these high nonlinear light data items. Here,
we can see that from Fig. 14, the light data set is different from
temperature and humidity data sets because its values vary within
a relatively bigger. Then, as a high-nonlinear and fluctuant time
series data sequence, this light sensed data set has some complex
characteristics. It results in a lower successful prediction rate with
Fig. 12. Average predicted error with different threshold of GM-OP-ELM, GM-
LSSVM, and GM–KRLS schemes for humidity item.

Fig. 13. The predicted error of GM–KRLS scheme for humidity item (ε = 0.17).

the threshold less than 0.4. However, our proposed method is
still efficient since the successful prediction rate is higher than
that of other two GM-based methods. Furthermore, in order to
verify the effectiveness of our scheme, we assign a series of bigger
values to the threshold in Fig. 15, where we can find that with the
increase of threshold, GM–KRLS still performs better than other
three methods.

In addition, Fig. 16 shows the corresponding average error of
these three schemes when the threshold ε changes. Fig. 17 shows
the predicted error of GM–KRLS at every sampling point when
ε = 0.17.

In addition to the above evaluation for prediction accuracy of
those schemes, we also provide a comparison for the computa-
tional time of GM–KRLS, GM-OP-ELM, and GM-LSSVM schemes in
every prediction period for three items. The results are listed in
Fig. 18. It can be observed that the computational time of GM-OP-
ELM is the least, and the computational time of GM–KRLS is almost
the same with that of GM-OP-ELM. But when compared with GM-
LSSVM, GM–KRLS ismore efficient since the computational time of
GM-LSSVM is almost 10 times as much as that of GM–KRLS.

In consideration of the prediction accuracy and the computa-
tional time simultaneously, our proposed scheme GM–KRLS may
be a competitive choice. Finally, it should be pointed out that al-
though GM-OP-ELM performs better than GM–KRLS in terms of
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Fig. 14. Prediction value of GM-OP-ELM, GM-LSSVM, and GM–KRLS schemes for
light items (ε = 0.17).

Fig. 15. Successful prediction rate with different threshold of GM, GM-OP-ELM,
GM-LSSVM, and GM–KRLS schemes for light item.

Fig. 16. Average predicted error with different threshold of GM-OP-ELM, GM-
LSSVM, and GM–KRLS schemes for light item.

the computational time, the formermay suffer fromdesign choices
during its implementation. Actually, ELM uses random projection
Fig. 17. The predicted error of GM–KRLS scheme for light item (ε = 0.17).

Fig. 18. Computational time of GM–KRLS, GM-OP-ELM, and GM-LSSVM schemes
in every prediction period for three items.

spaces, while KRLS uses data centered functional bases. It is diffi-
cult to set the design parameters optimally under the mathemati-
cal framework of ELM, practically we need to conduct many trials
and cross validation to select the number of hidden neurons and
the nonlinear functions with the purpose of finding a good pro-
jection space. On the other hand, the KRLS learning algorithm can
avoid such limitation by just mapping the data nonlinearly and de-
terministically to a Hilbert space, and adapting online the projec-
tion [38]. KRLS and its data centered basis functions are therefore
able to concentrate bases on the part of the functional space where
the input data exists. In view of it, the scheme GM–KRLS has its
unique advantage under the current computational framework.

4.4. Results of other data set

From the descriptions of the proposed data sensing and fusion
scheme GM–KRLS, it can be observed that a data sequence with
fixed length is used for the data prediction of next period. In this
case, the prediction effect is closely related to the length of data
sequence (i.e., n defined in Section 3) and the increase of data set
may not influence the algorithm effect. From this point of view,
the proposed schema may be appropriate for other data sets with
bigger size. Here we employ a larger temperature data set with
15,000 values to conduct simulation. When ε = 0.17, Figs. 19
and 20 show the prediction effect and the predicted error at every



94 X. Luo et al. / Future Generation Computer Systems 61 (2016) 85–96
Fig. 19. Prediction value of GM–KRLS scheme for a larger data set (ε = 0.17).

Fig. 20. The predicted error of GM–KRLS scheme for a larger data set (ε = 0.17).

sampling point, respectively. Here, the average error of GM–KRLS
is 0.0873 within a relatively tight bound, which also verifies the
effectiveness of the proposed method for a larger data set.

4.5. Results of encoding and decoding

In order to verify the effectiveness of BA, the simulation of
encoding and decoding is also conducted. In this simulation, we
choose four different data values with different NSSKs. The results
are listed in Table 1. It can be found that BA plays an important
role in guaranteeing the confidentiality under our proposed data
sensing and fusion scheme.

4.6. Parameter selections

In kernel methods, the parameter selections play an important
role in the design of learning algorithm.Here, taking the processing
for light data set as example, we explain how to choose proper
parameters in simulations. As mentioned above, λ, ζ , and β are
three important parameters of KRLS in GM–KRLS scheme. Firstly,
we will choose an appropriate β after considering three different
combinations of λ and ζ . Fig. 21 shows the average predicted error
in all three cases. It can be observed that the error is minimum
when β = 0.8, thus β is set to 0.8. Then, we vary the values of λ
and ζ from0.1 to 1.0with a step value of 0.1. The average predicted
Fig. 21. Predicted error with different β .

Fig. 22. Predicted error with different ζ and λ (β = 0.8).

error is shown in Fig. 22. Here, the average error decreases when
the ζ value is decreased from 1.0 to 0.1, meanwhile, λ has rather
little meaning for error. Therefore, we will select ζ first.

We vary the values of ζ from 0.005 to 0.1 with a step value
of 0.005 where λ value is randomly set to 0.1. Fig. 23 shows the
average predicted error with different ζ . Obviously, the ζ value
of 0.01 achieves the best performance, and this is why we use
ζ = 0.01 as the default setting in this simulation. Now, we only
have an unknown value of λ. Fig. 24 shows the average predicted
error while changing the values of λ. According to this figure, we
set λ = 0.5, then the minimum predicted error can be obtained.
So far, three parameters are selected. Similarly, those parameters of
GM–KRLS in processing temperature and humidity data sets could
be selected.

5. Conclusion

In WSNs, the prediction-based secure data sensing and fusion
are effective in reducing redundant data communications, saving
the energy of sensor nodes, keeping data confidentiality, and
enhancing the lifetime of network. Considering that the data
sensed by the sensor nodes are of high temporal redundancy and
the sensor nodes have limited energy, storage capacity, and data
processing ability, a novel prediction method based on secure
data sensing and fusion scheme GM–KRLS using GM, KRLS, and
BA is proposed in this paper to deal with those issues mentioned
above. In order to guarantee the data synchronization between
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Table 1
Simulation for encoding and decoding.

NSSK Raw data After encoding After decoding

nikiisexcellent 25.341 160–102–23110–25–13–693551 25.341
nikiisexcellent 66.5 14015–15–71–117–46–26–23–111 66.5
nikiisexcellent 128 130–6689–5099–66504–75 128
nikiisexcellent 0.3861 16069–80–2711–104–11–106–82 0.3861
youyouisperfect 25.341 16063–82–22–88–98–666234 25.341
youyouisperfect 66.5 140–41116107–108470–112–88 66.5
youyouisperfect 128 130–44–127848–10940–5389 128
youyouisperfect 0.3861 160–123–63–121–127–19–50111 0.3861
Fig. 23. Predicted error with different ζ .

Fig. 24. Predicted errors with different λ.

sensor nodes and sink node, the proposed scheme develops a
predictionmechanism. During the data sensing and fusion process,
the GM–KRLS firstly uses GM to implement the initial prediction
with a small number of data items, then employs KRLS learning
algorithm tomodify the predicted valuewith lower computational
cost and higher successful prediction rate. Meanwhile, BA is used
for data encoding and decoding during transmission process.
It can be found from simulation results that the proposed
scheme can improve the prediction accuracy and reduce the
energy consumption caused by redundant transmission. GM–KRLS
performs better than GM-LSSVM and GM-OP-ELM in terms of
accuracy, moreover its computational speed is close to GM-OP-
ELM but much more faster than GM-LSSVM. For high nonlinear
and fluctuant time series data sequence (such as data set of light
in Section 4), GM–KRLS has significant advantages than other
schemes. The confidentiality of data values is guaranteed bymeans
of reducing transmission and encoding data. In view of those issues
mentioned above, compared with other schemes, GM–KRLS may
be a better choice in industry WSNs on the deployment of CPSs.
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