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ith the development of cloud computing, 
more data is being stored in the cloud. Be-
cause cloud users might not want to disclose 
their information to cloud servers, security 
and privacy protection are basic require-
ments of cloud storage. Sensitive data is 

usually stored as ciphertext, but must be sharable with authorized us-
ers and certain services. Designing ciphertext control mechanisms to 
achieve access control in cloud storage is therefore challenging.

Proposed ciphertext control mechanisms for data access con-
trol include access control list (ACL),1 attribute-based encryption 
(ABE),2–4 and proxy reencryption-based solutions.5 ACL-based solu-
tions are inflexible and have poor scalability. ABE-based solutions can 
overcome these shortcomings, achieving both security and privacy re-
quirements,6,7 because they allow any user to access the ciphertext as 
long as the user’s attributes match the encryption attributes. However, 
these solutions use complex bilinear mapping, which brings a high 
compute overhead. In addition, authorization management is inflex-
ible and the open attributes could compromise the user’s privacy. Proxy 
reencryption-based solutions support access control through ciphertext 
transformation. Although they’re flexible, high overhead remains an is-
sue because of the bilinear mapping and public key transmission.

A lightweight 

ciphertext sharing 

scheme uses 

an anonymous 

authorization 

credential to 

simplify access 

control, ensure 

users’ anonymity, 

and support 

decryption key 

reconstruction. 
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We’ve designed a lightweight ciphertext sharing 
scheme that uses an anonymous authorization cre-
dential to simplify access control, ensure users’ ano-
nymity, and support decryption key reconstruction. 
We adopt a hierarchical key structure to realize fine-
grained key management and developed a flexible 
and lightweight key reconstruction solution based 
on the Lagrange interpolation function. By involv-
ing only simple arithmetic and symmetric and asym-
metric cryptographic algorithm operations, our solu-
tion overcomes the high overhead caused by bilinear 
mapping in most existing schemes. Performance 
evaluation and analysis show that the proposed 
scheme has advantages over existing approaches.

Motivation
At present, the basic idea of restricting access to 
encrypted data is to limit users’ decryption power 
by disclosing the data encryption key only to autho-
rized users. This process involves three main issues: 
key management, authorization management, and 
privacy preservation.

For key management, ACL-based solutions use 
symmetric and asymmetric algorithms to distribute 
the decryption key to authorized users, so the over-
head grows with the ACL’s length. The ABE scheme 
embeds an access control policy into an encryption 
algorithm to allow a user to decrypt the ciphertext 
if the user meets the required attributes. Because 
key management is integrated into access control 
policies, ABE solutions can avoid frequent key dis-
tribution during ciphertext access control. Proxy 
reencryption solutions realize key distribution by 
transforming the ciphertext of the encryption key 
to be encrypted by the authorized user’s public key. 
Although this scheme might seem flexible, it has a 
high computation overhead.

For authorization management, ACL- and 
proxy-reencryption-based solutions are relatively 
simple. ABE solutions for updating the access 
control policy are complicated, and are neither 
flexible nor practical. 

For privacy preservation, ACL- and proxy-reen-
cryption-based solutions can’t provide privacy pres-
ervation for users, because they need to know the 
user’s public key. ABE solutions also risk data leak-
age, because fine-grained access control requires ad-
ditional attributes.3 

Recently, several credential-based access control 
schemes have been proposed.8–10 Some are designed 
for anonymous access control on plaintext and aren’t 
suitable for ciphertext access control. Although 
some others are designed for anonymous access con-
trol on ciphertext, the decryption key is only distrib-
uted by the credential and isn’t flexible enough in 
the key updating. A lightweight, flexible ciphertext 
access control scheme with privacy preservation is 
clearly needed.

System Assumptions and Notation
The system model involves three types of partici-
pants: cloud server, data owner, and data sharer. 

A cloud server provides data storage services 
and enforces access control on the stored data ac-
cording to authorization credentials. A cloud server 
is considered semitrusted, meaning it can perform 
access control on the encrypted files faithfully and 
keep authorization-related data secret, but it’s curi-
ous about the plaintext of the data stored in it. A 
cloud server should help the data owner manage au-
thorization. To support authorization management, 
the cloud server needs to create an authorization 
credential list for each registered user and add an 
item for each authorization credential to point to the 
revoked files’ names list.

A data owner is a registered cloud user who 
stores files in the cloud in the format shown in 
Figure 1 (see Table 1 for a listing of the notations 
and symbols used in our scheme), and can share the 
files with other users by issuing authorization cre-
dentials to them. To avoid issuing more than one au-
thorization credential to a data sharer, a data owner 
records and indexes all valid authorization creden-
tials. A data owner can revoke the authorization 
from a data sharer without notification. 

Data sharers can access encrypted files listed 
in the authorized files list (I1) of their authoriza-

f
i

CF
i

CK
i

MF
i

MD
i

FIGURE 1. Formatting for files stored in the cloud. 

Files have five parts: file identification (fi), cyphertext 

of the encrypted file (CFi), cyphertext of the encrypt-

ed key (CKi), the encrypted file’s secret share (MFi), 

and the file’s integrity check code (MDi). 
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tion credentials and their mask values by showing 
proof to the cloud server that they’re the owner 
of the authorization credentials. Based on the en-
crypted file, its mask value, and its file binding 
code, a data sharer can reconstruct the file key 
of the authorized file. Data sharers should also keep 
the sensitive data derived from the authorization 
credential secret.

System initialization proceeds as follows: 

•	 Data owners register with the cloud server. 
•	 The cloud server allocates storage space for the 

registered users.
•	 A pair of public/private keys are generated for 

each participant.
•	 Participants can get each other’s public keys. 
•	 All participants can perform symmetrical and 

asymmetrical encryption/signature algorithms.
•	 Data files in the cloud are organized using a di-

rectory structure for each user.

The hash function and keyed-hash message authen-
tication code (HMAC) function are noncollision 
functions or security in a cryptographic sense. 

Key Management
The hierarchical key structure is popular in cloud 
storage.11 Generally, the user-oriented key, or top-
level key, is used to decrypt a file and is usually man-
aged by a public key infrastructure (PKI) or trusted 
third party (TTP), or is integrated into a set of at-
tributes or access control policies. The file-oriented 
key, or non-top-level key, is used to encrypt the file 
and is usually stored in the form of ciphertexts with 
the encrypted file.

Here, we use the file system’s directory structure 
to organize and manage keys, since it’s consistent 
with the file system and makes it easy to realize fine-
grained key management (one file, one key). Accord-
ingly, there are three types of keys—the data owner’s 
secret key, the directory key, and the data file key. 

Key Generation 
For a data owner A, its secret key KOA can be random-
ly generated according to the security policy and must 
be secretly kept by itself. As the top-level key, it’s used 
to encrypt the key of each file in its root directory. 

Because a directory and a data file can both be 
considered files for practical purposes, the directory 

Table 1. Notations and symbols.

Notation Description

CFi Ciphertext of fi, CFi = E(KFi, Fi)

CKi Ciphertext of fi’s encryption key, CKi = E(KPi, KFi)

D(k, C) Decrypt ciphertext C using key k

E(k, m) Encrypt message m using key k

fi Full name of file i

Fi Contents of fi, if fi is a directory, Fi = fi

Hash() Hash function

HMAC(k, m) Keyed-hash message authentication code (HMAC) function, based on key k and message m

IDi Identifier of i

KFi Encryption key based on the symmetric cryptograph for fi

KOi Secret key of data owner i

KPi Parent directory key of fi

MDi Digest of CFi, MDi = Hash(CFi)

MFi Key sharer of CFi, MFi = gi(Hash(CFi))

P A big prime; its length should not be less than the required length of the symmetric key

PKi Public key of i

Sig(k, m) Signature of message m using key k

SKi Private key of i
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and data file keys can be generated in the same way. 
For fine-grained key management, and given that 
changing a file (especially its name) means changing 
the authorization, the file key, shown in Equation 1, is 
unique for each file and changes with the file’s name: 

KFi = HMAC(ri, fi),� (1)

where ri is chosen from [1, p] randomly for file fi. 
Note that the functions of the directory key and 

the data file key are different. The former is used to 
encrypt the keys for all of the files in the directory, 
whereas the latter is used to encrypt only the data 
file itself.

Key Distribution
Key distribution occurs when the data owner wants 
to grant access privileges to a data user. To allow 
only the authorized data user to decrypt the autho-
rized file, we use Shamir’s Secret Sharing to distrib-
ute the decryption key.12 We model the key distribu-
tion using a (2, 2) Shamir’s Secret Sharing problem. 
For each file, a 1-degree Lagrange interpolation 
function over the finite field Zp should be construct-
ed using Equation 2, where a, b ∈ Zp:

g(x) = (ax + b) mod p.� (2)

To distribute fi’s key only to its authorized user 
and simplify key management, the interpolation 
function of file fi is required to pass point (0, FBCi). 
Here, FBCi is the file binding code of fi and is calcu-
lated using Equation 3:

FBCi = HMAC(KOA, fi) mod p.� (3)

For security, FBCi should be encrypted with the 
credential owner’s public key, and transmitted using 
the authorization credential. Meanwhile, CFi is con-
sidered to be a participant in the sharer of the key; 
its secret share MFi = g(Hash(CFi) mod p) is stored 
with it in the cloud.

Thus, we can describe fi’s key distribution func-
tion using Equation 4:

gi(x) = (KFi × x + FBCi) mod p.� (4)

Only the credential owner can obtain the two 
points (Hash(CFi), MFi) and (0, FBCi) on fi’s in-
terpolation function, and reconstruct fi’s key using 
Equation 5: 

KFi = (Hash(CFi))
–1 × (MFi – FBCi) mod p.� (5)

Because different files have different interpo-
lations and file binding codes, unauthorized users 
(even if they’ve stolen an authorized user’s credential) 
can’t get the two points for file key reconstruction.

There are two ways to obtain the file key. In 
one case, where the requested file is in the autho-
rized file listed, the file key can be reconstructed 
according to the interpolation function. In the oth-
er case, where the required file isn’t in the autho-
rized file listed but its parent or ancestor directory 
is, the parent or ancestor directory key should first 
be reconstructed using the interpolation function, 
and then the file key can be obtained using step-
wise decryption.

Key Updating
Key updating usually occurs when the current key 
expires, the file name changes, the file changes, or 
the data owner wants to revoke the access privilege 
for a file from all data users. Most of the operations 
are similar to key generation. The main difference is 
that key updating often involves some reencryption. 
Due to length limitations, we don’t discuss this here. 

Authorization Credential
We introduce an anonymous authorization cre-
dential to express the authorization information 
and distribute a key sharer of the authorized file 
to the credential owner. This credential has seven 
items, denoted I1, I2, I3, I4, I5, I6, and I7, as Figure 2 
illustrates.

I
1
: Authorized files list (f

1
, f

2
, … f

n
)

I
2
:  Validity period

I
3
:  Credential number (CN)

I
6
:  Verification code (VC)

I
4
:  Credential issuer’s or data owner's ID 

I
7
:  Binding code list (M

0
, M

1
, M

2
, … M

n
)

I
5
:  Credential issuer’s or data owner’s signature 

FIGURE 2. Anonymous authorization credential, 

where I1, I2, I3, I4, and I5 are the credential’s basic in-

formation, which is requisite for the credential owner 

and the credential verifier; I6 is known only to the 

cloud server; and I7 is known only to the credential 

owner.
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Item I1 expresses the authorization objects as an 
authorized files list. It includes the full names of the 
files whose access privileges are granted to the cre-
dential owners.

Items I2, I3, and I4 are jointly used to describe 
the credential information and indicate the valid-
ity period, credential number, and the credential 
issuer’s ID, respectively. Items I3 and I4 should be 
unique in the same system.

Item I5 is the credential issuer A’s (that is, the 
data owner) signature on the authorization and cre-
dential information. It helps the cloud server C and 
the authorized user B (that is, the data sharer or cre-
dential owner) verify the credential’s validity. I5 is 
determined by following two steps:

1.	Compute the digest of the basic information of 
the credential, HC = Hash(I1||I2||I3||I4).

2.	Add signature to HC and get I5 = Sig(SKA, HC).

Item I6 is the verification code (VC), which is 
mainly used by cloud server C to check whether the 
credential is used by its owner or not. We determine 
I6 by following three steps:

1.	Compute the credential binding code (CBC) us-
ing Equation 6, which is used to bind the cre-
dential with its owner and avoid being stolen by 
another user: 

	 CBC =HMAC(KOA, CN||IDB),� (6)

where CN is the credential number and IDB is 
the data sharer’s identity.

2.	Compute the user verification code (UVC) using 
Equation 7:

	 UVC = HMAC(CBC, CN).� (7)

3.	Calculate I6 = E(PKC, UVC), where PKC is the 
public key of cloud server C.

Item I7 is the binding code list, which is used by 
the credential owner B to verify the credential’s in-
tegrity, and to extract the credential and file binding 
codes. The CBC is used to prove the user is the cre-
dential owner, and the FBC is used as a secret share 
to restore the file key. To prevent unauthorized users 
from stealing the credential and restoring the file key, 
all binding codes should be transmitted in ciphertext. 
We determine I7 using the following three steps:

1.	Encrypt CBC using PKB to get M0, M0 = E(PKB, 
CBC). 

2.	For each authorized file fi in I1, compute FBCi 
using Equation 3 and encrypt it using PKB to get 
Mi, Mi = E(PKB, FBCi), i ∈ [1, n].

3.	Get I7 = M0||M1||, . . ., ||Mn, i ∈[1, n].

The authorization credential contains only the 
first five items, which have nothing to do with the 
credential owner’s identity. Items I6 and I7 are de-
signed for the cloud server and the credential owner, 
respectively, and are related to the identity of cre-
dential owner B by the CBC, which is used to bind 
B and the credential by HMAC(KOA, CN||IDB). 
Obviously, CBC can hide IDB from anyone. Because 
none of credential owner B’s identity information is 
exposed, the authorization credential can be regard-
ed as anonymous.

Scheme Description
The proposed ciphertext access control scheme in-
cludes four function modules: file management, au-
thorization, access control, and authorization revok-
ing. In essence, the last three function modules are 
elements of authorization management. Figures 3 
and 4 show diagrams of file management and autho-
rization management, respectively.

File Management
Similar to existing cloud storage systems, registered 
data owners can log into their accounts to manage 
their files. The main differences are the processes 
for creating and modifying files. Because a data 
owner A can derive a file key from its secret key, the 
data owner uses the parent directory key KPi of fi to 
encrypt the key of a new file in it. 

Creating a file. Creating a file means creating a di-
rectory or uploading a data file to the data owner’s 
account in the cloud. For a registered user A (that is, 
the data owner), constructing a CFR for fi requires 
performing the following eight steps:

1.	Choose a random number ri from [1, p], and 
calculate its key according to Equation 1, KFi = 
HMAC(ri, fi). 

2.	Encrypt KFi with KPi, CKi = E(KPi, KFi ).
3.	 If the new file is a directory, let Fi be fi. Encrypt 

Fi with KFi and get CFi = E(KFi, Fi).
4.	Compute FBCi = HMAC(KOA, fi).
5.	Construct a linear function gi(x) = KFi × x 

+ FBCi on a finite field Zp for fi and compute 
the secret sharer MFi for CFi, MFi = KFi × 
Hash(CFi) + FBCi.

6.	Compute MDi = Hash(CFi).
7.	Compute Hi = Hash(Creating|| fi||CFi||CK i 
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Cloud service provider
(datacenter)

Data owner
(cloud user A)

CFR
Verify the validity of CFR and
construct an acknowledgement
message ACK according to the
verification.

Verify the validity of MFR and
construct an acknowledgement
message ACK according to the
verification.

ACK

Act according to ACK. 

Construct file creating
request message CFR.

File Creating 

File Modifying 

Make modification on a file and its
related data, and construct file modifying
request message MFR. 

MFR

ACK

Act according to ACK. 

FIGURE 3. File management. (a) In the file creation stage, data user A constructs a create file request (CFR) ac-

cording to the format shown in Figure 1. (b) In the file modification stage, a modify file request (MFR) is con-

structed similarly to the CFR. 

Cloud server
(datacenter C)

Data user
(cloud user A)

Data sharer
(cloud user B)

Construct an authorization
information AMC and AMB. 

Verify the AMB. If it passes
the verification, accept the
authorization. 

Verify the AMC. If it passes
the verification, keep the
authorization. 

Construct access request
message AFM and send it to
the cloud server.

Construct an identity proof
message IPM.

AMC

AMB
Authorization 

AFM

Verify the validity of AFM.
If it passes the verification,
construct an identity
verification message IVM.

IVM

IPM

Verify the validity of IPM and
construct an acknowledgment
message ACK.

ACK Access the file or stop
according to ACK.

Access control

Construct an authorization
revoking request message ARM. 

ARM
Verify the validity of ARM and
construct an acknowledgment
message ACK. 

Act according to ACK. 

ACK

Authorization
revoking

FIGURE 4. Authorization management. (a) Authorization information should be constructed according to two cases, for the cloud 

server and data sharer, respectively. (b) Access control involves only the cloud server and data sharer. The cloud server uses an 

access request message (AFM), identity verification message (IVM), and identity proof message (IPM) to access the encrypted file. 

The data sharer uses an acknowledgment message (ACK) to reconstruct the file key. (c) Authorization revocation is launched by 

the data owner and accomplished by the cloud server.
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||MFi||MDi), and add a signature to it, SHi = 
Sig(SKA, Hi).

8.	Let CFR = Creating|| fi||CFi||CKi||MFi||MDi 

||SHi||IDA, and send it to the cloud server. 

After receiving the CFR, the cloud server veri-
fies it using PKA. If it passes verification, fi will be 
stored in A’s cloud account in the format shown in 
Figure 1. Meanwhile, the cloud server will send a 
“success” ACK to A; otherwise, it will send an “error” 
ACK to A.

Modifying a file. When a data owner A wants to 
modify its file fi stored in the cloud, it performs the 
following six steps.

1.	Make modification on fi or Fi to obtain fi′ or Fi′.
2.	 If fi ≠ fi′ or A wants to update KFi, choose a ran-

dom number ri′ from [1, p], and compute KFi′ = 
HMAC(ri′, fi′); otherwise, let KFi′ = KFi.

3.	Perform the operations in “creating a file” from 
steps 2 to 6 to get CKi′, CFi′, FBCi′, MFi′, and 
MDi′, respectively. 

4.	Compute Hi′ = Hash(Modifying|| fi|| fi′||CFi′||CKi

′||MFi′||MDi′).
5.	Make a signature on Hi′ and get SHi′ = Sig(SKA, 

Hi′).
6.	Let MFR = Modifying|| fi|| fi′||CFi′||CKi′||MFi′||M

Di′||SHi′||IDA, and send it to the cloud server.

After receiving the MFR, the cloud server will 
verify it using PKA. If the file passes verification, the 
cloud server checks whether fi is in A’s account or 
not. If it is, it deletes fi and stores fi′ in the format 
shown in Figure 1 in the proper location, and sends 
a “success” ACK to data owner A; otherwise, it sends 
“error” to A.

Authorization
Authorization includes both whole and partial au-
thorization. Whole authorization is used when 
there’s no valid authorization credential for the data 
user. In this case, the whole authorization creden-
tial should be constructed on the authorized files. 
The authorization information for the cloud server 
(AMC) is set to “I1||I2||I3||I4||I5||I6,” and the authoriza-
tion information for the data user B (AMB) is set to 
“I1||I2||I3||I4||I5||I7.”

Partial authorization is used when there’s a 
valid authorization credential for data user B, and 
data owner A wants to add some authorization to 
it. Here, the data owner just needs to tell the cloud 
server and the data sharer the added authoriza-
tion information instead of the whole credential. 

For this purpose, the file list granted to B should 
be constructed and denoted by Pf. Accordingly, 
the file binding code for each file in Pf should be 
computed and encrypted by PKB to get the FBC 
list, which is denoted Mf. For the cloud serv-
er, AMC is set to “Adding||IDA||CN|Pf ||Sig(SKA, 
Hash(Adding||IDA||CN||Pf )),” and for B, 
AMB is set to “Adding||IDA||Pf ||Mf ||Sig(SK A, 
Hash(Adding||IDA||Pf ||Mf)).”

Access Control
Access control includes two aspects. One is mak-
ing access control on the ciphertext, and the other 
is file key reconstruction. For the former, five steps 
are needed.

Data user B performs step 1, which includes:

•	 Decrypt M0 in I7 of the authorization credential 
to get CBC.

•	 Construct an access request “ fi||II3||I4|| E(PKC, 
CBC)” and send it to cloud server C.

Cloud server C performs step 2, which involves 
checking whether the credential is valid and fi is 
an authorized file of the authorization credential. 
If yes, it decrypts E(PKC, CBC) to compute UVC = 
HMAC(CBC, CN). If UVC = I3, generate a random 
number r from [1, p] and let ACK be E(CBC, r); oth-
erwise, let ACK be “error.” 

In step 3, data user B decrypts E(CBC, r) with 
CBC, and encrypts (r + 1) with CBC and sends it 
to C.

In step 4, cloud server C checks whether 
D(CBC, E(CBC, (r + 1))) = (r + 1) or not. If not, let 
ACK be “error”; if so, there are two cases: 

•	 ACK = E(CBC, CFi||MFi||MDi), if fi is in I1.
•	 ACK = E(CBC, CFj||MFj|| . . . CKp||CFi||CKi||MDi), 

if fi is not in I1, but its ancestor directory fj is in I1. 
Here, “ . . . CKp” denotes that all CKs are in the 
path of fj to fp.

In step 5, data user B reconstructs the file key 
according to ACK. If the ACK is “error,” stop the 
reconstruction; otherwise, decrypt it and verify the 
integrity of CFi. If it does not pass verification, stop; 
otherwise, reconstruct the file key as follows:

•	 if fi is in I1, decrypt Mi with CBC to get FBCi; 
compute KFi = (Hash(CFi))

–1 × (MFi – FBCi);
•	 otherwise, decrypt Mj with CBC to get FBCj; 

compute KFj = (Hash(CFj))
–1 × (MFj – FBCj), 

and derive KFi from KFj and the CK of each of its 
ancestor stepwise.
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After obtaining the decryption key of the re-
quested file, data user B can decrypt its ciphertext 
CFi with it and get its plaintext Fi to read.

Authorization Revoking
Authorization revoking is launched by the data own-
er and accomplished through collaboration of the 
data owner and cloud server. It includes three steps:

1.	Data owner A constructs a revoking file list 
denoted by Rf, and makes a signature on 
Hash(Revoking||IDA||CN||Rf) to get SR = Sig(SKA, 
Hash(Revoking||IDA||CN||Rf)). It then sends 
“Revoking||IDA||CN||Rf ||SR” to cloud server C.

2.	Cloud server C verifies SR with PKA. If SR passes 
verification and the credential with CN is in A’s 
authorization credential list, for each file in Rf, if 
it is in I1, delete it from both Rf and I1. If I1 is emp-
ty, remove the credential from the credential list, 
and let ACK be Sig(SKC, SR); otherwise, let ACK 
be “error.” And then sends ACK to data owner A.

3.	 If ACK isn’t “error,” data owner A verifies 
Sig(SKC, SR) with PKC. If it passes verification, 
delete the file names in Rf from I1. If I1 is empty, 
delete the credential.

The process of authorization revoking requires 
the data owner and the cloud server to authenticate 
each other so as to keep the consistency of the cre-
dential in both sides.

Security and Performance Evaluation
To evaluate the proposed scheme, we use methods 
described elsewhere to analyze security and perfor-
mance.13,14 We also analyze the overheads, consider-
ing the aspects of key management and authoriza-
tion management.

The scheme’s security is guaranteed by linear 
secret sharing and symmetric and asymmetric theo-
ry. We assume that all algorithms and functions are 
secure.

For confidentiality, we encrypt the data in the 
cloud using a security symmetric cryptographic algo-
rithm, which makes the data secret from the cloud 
server. The key distribution is based on the idea of 
linear secret sharing, and only the authorized user 
can obtain secret sharers, which also keeps it secret 
from unauthorized users. So, the encryption opera-
tion is limited to authorized users and the data owner.

The hash function and the signature based on 
the asymmetric algorithm are jointly used to guaran-
tee data integrity. Both the cloud server and the au-
thorized user can check data integrity as necessary.

Authenticity is guaranteed through authentica-

tion, which is realized by a signature based on an 
asymmetric algorithm or a symmetric cryptographic 
algorithm. For instance, both a signature and en-
cryption are used in access control; the former helps 
the cloud server verify the credential’s authenticity, 
and the latter helps it guarantee that the user is the 
authorization credential owner.

Fine-Grained Access Control
Access control granularity can be refined to a basic 
data unit and a basic access entity. In this scheme, 
the data owner can specify who can access which 
file (such as a data block, data file, or directory) dur-
ing a certain valid period based on a specific autho-
rization credential. The authorization credential is 
bounded with its data owner anonymously, and also 
stays consistent with the data users.

Scalability
In this scheme, the size of the encrypted data and the 
length of the parameters are relatively independent of 
the number of data users. Adding a data user means 
issuing it an authorization credential, and there’s no 
change to the data in the cloud, and it doesn’t involve 
the cloud server or affect other data users either. 
Thus, adding a data user doesn’t cause an obvious 
performance decline or cost within the system.

Overhead
For simplicity, we measure computational overhead 
using an approach in which one bilinear pairing is 
about 20 point scalar multiplications, and one mod-
ular exponential operation is two point scalar mul-
tiplications.15 Because the overheads for symmetric 
cryptography and hash/HMAC are much less than 
those for public key operations, we consider only the 
public key operations.

Key Management 
In this scheme, distributing a file key involves 1 el-
liptic curve cryptography (ECC) encryption and de-
cryption. Key updating doesn’t affect authorization 
and the FBC, and only symmetric encryption and ar-
ithmetical operations are needed. Assume we use the 
elliptic curve integrated encryption scheme (ECIES) 
to perform ECC encryption and decryption, and we 
need only three point scalar multiplications. 

In traditional ABE schemes, key distribution 
needs one decryption involving one more bilinear 
pairing. Key updating involves one encryption oper-
ation. There are at least two bilinear pairings, which 
are about 40 point scalar multiplications. It can be 
seen that the cost for our key management is much 
lower than that of other ABE schemes.
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Authorization management includes both grant-
ing and revoking authorizations. In this scheme, 
authorization granting aims to issue an authoriza-
tion credential. One ECC-based encryption and one 
signature are needed for a credential and (n + 1) 
ECC-based encryptions are needed for n files in an 
authorization credential. To revoke an authorization, 
if the authorization credential is for a single user, only 
one ECC-based signature is needed. If the authori-
zation credential is for a group of users and the data 
owner wants to revoke some members’ privilege, the 
data owner will revoke one credential and issue one 
credential; only one ECC-based signature and (n + 1) 
ECC-based encryptions are needed. Assuming that 
n  15 and ECDSA is used for signature and ECIES 
is used for encryption, one signature and (n + 2)  
17 encryption are needed, which is about 35 point 
scalar multiplications. 

In typical ABE schemes, an access control policy 
is usually associated with the private key or ciphertext. 
Authorization is embedded in the encryption process, 
which needs at least one bilinear pairing mapping. 
Updating the access policy requires reencrypting the 
changed attribute set. Even the “lazy” reencryption 
strategy can be postponed; the expensive reencryption 
(at least one bilinear pairing mapping) is inevitable. 
Authorization revocation also means that changing 
and reencrypting attributes are unavoidable. Thus, 
at least three bilinear pairing mappings are needed, 
which is equivalent to 60 point scalar multiplications.

It turns out that the overhead of authorization 
management is much lower than that in other ABE 

schemes. Additionally, the proposed scheme pro-
vides partial revoking, which realizes flexible autho-
rization management. Table 2 summarizes the per-
formance analysis.

he proposed access control scheme is anony-
mous, lightweight, fine-grained, and scalable, 

but it’s designed only for ciphertext access control 
and can’t meet the access control requirements of 
other cloud applications. In the future, we’ll try to 
balance the costs on the user side and the expense 
of using cloud resources to develop a practical ser-
vice access control scheme.  
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