
LE
G

A
L

C
LO

U
D

S

34	 I EEE CLO U D CO M P U T I N G P U B L I S H ED BY T H E I EEE CO M P U T ER S O CI E T Y � 2 3 2 5 - 6 0 9 5/ 1 5 /$ 31 . 0 0 © 2 0 1 5 I EEE

ith the development of cloud computing,
more data is being stored in the cloud. Be-
cause cloud users might not want to disclose
their information to cloud servers, security
and privacy protection are basic require-
ments of cloud storage. Sensitive data is

usually stored as ciphertext, but must be sharable with authorized us-
ers and certain services. Designing ciphertext control mechanisms to
achieve access control in cloud storage is therefore challenging.

Proposed ciphertext control mechanisms for data access con-
trol include access control list (ACL),1 attribute-based encryption
(ABE),2–4 and proxy reencryption-based solutions.5 ACL-based solu-
tions are inflexible and have poor scalability. ABE-based solutions can
overcome these shortcomings, achieving both security and privacy re-
quirements,6,7 because they allow any user to access the ciphertext as
long as the user’s attributes match the encryption attributes. However,
these solutions use complex bilinear mapping, which brings a high
compute overhead. In addition, authorization management is inflex-
ible and the open attributes could compromise the user’s privacy. Proxy
reencryption-based solutions support access control through ciphertext
transformation. Although they’re flexible, high overhead remains an is-
sue because of the bilinear mapping and public key transmission.

A lightweight

ciphertext sharing

scheme uses

an anonymous

authorization

credential to

simplify access

control, ensure

users’ anonymity,

and support

decryption key

reconstruction.

Anonymous
Credential-Based
Access Control
Scheme for Clouds

Xuanxia Yao, University of Science and Technology Beijing
Hong Liu, Run Technologies Co., Ltd., Beijing
Huansheng Ning, University of Science and Technology Beijing
Laurence T. Yang, St. Francis Xavier University, Canada
Yang Xiang, Deakin University, Australia

J U LY/A U G U S T 2 0 1 5 	 I EEE CLO U D CO M P U T I N G� 3 5

We’ve designed a lightweight ciphertext sharing
scheme that uses an anonymous authorization cre-
dential to simplify access control, ensure users’ ano-
nymity, and support decryption key reconstruction.
We adopt a hierarchical key structure to realize fine-
grained key management and developed a flexible
and lightweight key reconstruction solution based
on the Lagrange interpolation function. By involv-
ing only simple arithmetic and symmetric and asym-
metric cryptographic algorithm operations, our solu-
tion overcomes the high overhead caused by bilinear
mapping in most existing schemes. Performance
evaluation and analysis show that the proposed
scheme has advantages over existing approaches.

Motivation
At present, the basic idea of restricting access to
encrypted data is to limit users’ decryption power
by disclosing the data encryption key only to autho-
rized users. This process involves three main issues:
key management, authorization management, and
privacy preservation.

For key management, ACL-based solutions use
symmetric and asymmetric algorithms to distribute
the decryption key to authorized users, so the over-
head grows with the ACL’s length. The ABE scheme
embeds an access control policy into an encryption
algorithm to allow a user to decrypt the ciphertext
if the user meets the required attributes. Because
key management is integrated into access control
policies, ABE solutions can avoid frequent key dis-
tribution during ciphertext access control. Proxy
reencryption solutions realize key distribution by
transforming the ciphertext of the encryption key
to be encrypted by the authorized user’s public key.
Although this scheme might seem flexible, it has a
high computation overhead.

For authorization management, ACL- and
proxy-reencryption-based solutions are relatively
simple. ABE solutions for updating the access
control policy are complicated, and are neither
flexible nor practical.

For privacy preservation, ACL- and proxy-reen-
cryption-based solutions can’t provide privacy pres-
ervation for users, because they need to know the
user’s public key. ABE solutions also risk data leak-
age, because fine-grained access control requires ad-
ditional attributes.3

Recently, several credential-based access control
schemes have been proposed.8–10 Some are designed
for anonymous access control on plaintext and aren’t
suitable for ciphertext access control. Although
some others are designed for anonymous access con-
trol on ciphertext, the decryption key is only distrib-
uted by the credential and isn’t flexible enough in
the key updating. A lightweight, flexible ciphertext
access control scheme with privacy preservation is
clearly needed.

System Assumptions and Notation
The system model involves three types of partici-
pants: cloud server, data owner, and data sharer.

A cloud server provides data storage services
and enforces access control on the stored data ac-
cording to authorization credentials. A cloud server
is considered semitrusted, meaning it can perform
access control on the encrypted files faithfully and
keep authorization-related data secret, but it’s curi-
ous about the plaintext of the data stored in it. A
cloud server should help the data owner manage au-
thorization. To support authorization management,
the cloud server needs to create an authorization
credential list for each registered user and add an
item for each authorization credential to point to the
revoked files’ names list.

A data owner is a registered cloud user who
stores files in the cloud in the format shown in
Figure 1 (see Table 1 for a listing of the notations
and symbols used in our scheme), and can share the
files with other users by issuing authorization cre-
dentials to them. To avoid issuing more than one au-
thorization credential to a data sharer, a data owner
records and indexes all valid authorization creden-
tials. A data owner can revoke the authorization
from a data sharer without notification.

Data sharers can access encrypted files listed
in the authorized files list (I1) of their authoriza-

f
i

CF
i

CK
i

MF
i

MD
i

FIGURE 1. Formatting for files stored in the cloud.

Files have five parts: file identification (fi), cyphertext

of the encrypted file (CFi), cyphertext of the encrypt-

ed key (CKi), the encrypted file’s secret share (MFi),

and the file’s integrity check code (MDi).

36	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

LE
G

A
L

C
LO

U
D

S

tion credentials and their mask values by showing
proof to the cloud server that they’re the owner
of the authorization credentials. Based on the en-
crypted file, its mask value, and its file binding
code, a data sharer can reconstruct the file key
of the authorized file. Data sharers should also keep
the sensitive data derived from the authorization
credential secret.

System initialization proceeds as follows:

•	 Data owners register with the cloud server.
•	 The cloud server allocates storage space for the

registered users.
•	 A pair of public/private keys are generated for

each participant.
•	 Participants can get each other’s public keys.
•	 All participants can perform symmetrical and

asymmetrical encryption/signature algorithms.
•	 Data files in the cloud are organized using a di-

rectory structure for each user.

The hash function and keyed-hash message authen-
tication code (HMAC) function are noncollision
functions or security in a cryptographic sense.

Key Management
The hierarchical key structure is popular in cloud
storage.11 Generally, the user-oriented key, or top-
level key, is used to decrypt a file and is usually man-
aged by a public key infrastructure (PKI) or trusted
third party (TTP), or is integrated into a set of at-
tributes or access control policies. The file-oriented
key, or non-top-level key, is used to encrypt the file
and is usually stored in the form of ciphertexts with
the encrypted file.

Here, we use the file system’s directory structure
to organize and manage keys, since it’s consistent
with the file system and makes it easy to realize fine-
grained key management (one file, one key). Accord-
ingly, there are three types of keys—the data owner’s
secret key, the directory key, and the data file key.

Key Generation
For a data owner A, its secret key KOA can be random-
ly generated according to the security policy and must
be secretly kept by itself. As the top-level key, it’s used
to encrypt the key of each file in its root directory.

Because a directory and a data file can both be
considered files for practical purposes, the directory

Table 1. Notations and symbols.

Notation Description

CFi Ciphertext of fi, CFi = E(KFi, Fi)

CKi Ciphertext of fi’s encryption key, CKi = E(KPi, KFi)

D(k, C) Decrypt ciphertext C using key k

E(k, m) Encrypt message m using key k

fi Full name of file i

Fi Contents of fi, if fi is a directory, Fi = fi

Hash() Hash function

HMAC(k, m) Keyed-hash message authentication code (HMAC) function, based on key k and message m

IDi Identifier of i

KFi Encryption key based on the symmetric cryptograph for fi

KOi Secret key of data owner i

KPi Parent directory key of fi

MDi Digest of CFi, MDi = Hash(CFi)

MFi Key sharer of CFi, MFi = gi(Hash(CFi))

P A big prime; its length should not be less than the required length of the symmetric key

PKi Public key of i

Sig(k, m) Signature of message m using key k

SKi Private key of i

J U LY/A U G U S T 2 0 1 5 	 I EEE CLO U D CO M P U T I N G� 3 7

and data file keys can be generated in the same way.
For fine-grained key management, and given that
changing a file (especially its name) means changing
the authorization, the file key, shown in Equation 1, is
unique for each file and changes with the file’s name:

KFi = HMAC(ri, fi),� (1)

where ri is chosen from [1, p] randomly for file fi.
Note that the functions of the directory key and

the data file key are different. The former is used to
encrypt the keys for all of the files in the directory,
whereas the latter is used to encrypt only the data
file itself.

Key Distribution
Key distribution occurs when the data owner wants
to grant access privileges to a data user. To allow
only the authorized data user to decrypt the autho-
rized file, we use Shamir’s Secret Sharing to distrib-
ute the decryption key.12 We model the key distribu-
tion using a (2, 2) Shamir’s Secret Sharing problem.
For each file, a 1-degree Lagrange interpolation
function over the finite field Zp should be construct-
ed using Equation 2, where a, b ∈ Zp:

g(x) = (ax + b) mod p.� (2)

To distribute fi’s key only to its authorized user
and simplify key management, the interpolation
function of file fi is required to pass point (0, FBCi).
Here, FBCi is the file binding code of fi and is calcu-
lated using Equation 3:

FBCi = HMAC(KOA, fi) mod p.� (3)

For security, FBCi should be encrypted with the
credential owner’s public key, and transmitted using
the authorization credential. Meanwhile, CFi is con-
sidered to be a participant in the sharer of the key;
its secret share MFi = g(Hash(CFi) mod p) is stored
with it in the cloud.

Thus, we can describe fi’s key distribution func-
tion using Equation 4:

gi(x) = (KFi × x + FBCi) mod p.� (4)

Only the credential owner can obtain the two
points (Hash(CFi), MFi) and (0, FBCi) on fi’s in-
terpolation function, and reconstruct fi’s key using
Equation 5:

KFi = (Hash(CFi))
–1 × (MFi – FBCi) mod p.� (5)

Because different files have different interpo-
lations and file binding codes, unauthorized users
(even if they’ve stolen an authorized user’s credential)
can’t get the two points for file key reconstruction.

There are two ways to obtain the file key. In
one case, where the requested file is in the autho-
rized file listed, the file key can be reconstructed
according to the interpolation function. In the oth-
er case, where the required file isn’t in the autho-
rized file listed but its parent or ancestor directory
is, the parent or ancestor directory key should first
be reconstructed using the interpolation function,
and then the file key can be obtained using step-
wise decryption.

Key Updating
Key updating usually occurs when the current key
expires, the file name changes, the file changes, or
the data owner wants to revoke the access privilege
for a file from all data users. Most of the operations
are similar to key generation. The main difference is
that key updating often involves some reencryption.
Due to length limitations, we don’t discuss this here.

Authorization Credential
We introduce an anonymous authorization cre-
dential to express the authorization information
and distribute a key sharer of the authorized file
to the credential owner. This credential has seven
items, denoted I1, I2, I3, I4, I5, I6, and I7, as Figure 2
illustrates.

I
1
: Authorized files list (f

1
, f

2
, … f

n
)

I
2
: Validity period

I
3
: Credential number (CN)

I
6
: Verification code (VC)

I
4
: Credential issuer’s or data owner's ID

I
7
: Binding code list (M

0
, M

1
, M

2
, … M

n
)

I
5
: Credential issuer’s or data owner’s signature

FIGURE 2. Anonymous authorization credential,

where I1, I2, I3, I4, and I5 are the credential’s basic in-

formation, which is requisite for the credential owner

and the credential verifier; I6 is known only to the

cloud server; and I7 is known only to the credential

owner.

38	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

LE
G

A
L

C
LO

U
D

S

Item I1 expresses the authorization objects as an
authorized files list. It includes the full names of the
files whose access privileges are granted to the cre-
dential owners.

Items I2, I3, and I4 are jointly used to describe
the credential information and indicate the valid-
ity period, credential number, and the credential
issuer’s ID, respectively. Items I3 and I4 should be
unique in the same system.

Item I5 is the credential issuer A’s (that is, the
data owner) signature on the authorization and cre-
dential information. It helps the cloud server C and
the authorized user B (that is, the data sharer or cre-
dential owner) verify the credential’s validity. I5 is
determined by following two steps:

1.	Compute the digest of the basic information of
the credential, HC = Hash(I1||I2||I3||I4).

2.	Add signature to HC and get I5 = Sig(SKA, HC).

Item I6 is the verification code (VC), which is
mainly used by cloud server C to check whether the
credential is used by its owner or not. We determine
I6 by following three steps:

1.	Compute the credential binding code (CBC) us-
ing Equation 6, which is used to bind the cre-
dential with its owner and avoid being stolen by
another user:

	 CBC =HMAC(KOA, CN||IDB),� (6)

where CN is the credential number and IDB is
the data sharer’s identity.

2.	Compute the user verification code (UVC) using
Equation 7:

	 UVC = HMAC(CBC, CN).� (7)

3.	Calculate I6 = E(PKC, UVC), where PKC is the
public key of cloud server C.

Item I7 is the binding code list, which is used by
the credential owner B to verify the credential’s in-
tegrity, and to extract the credential and file binding
codes. The CBC is used to prove the user is the cre-
dential owner, and the FBC is used as a secret share
to restore the file key. To prevent unauthorized users
from stealing the credential and restoring the file key,
all binding codes should be transmitted in ciphertext.
We determine I7 using the following three steps:

1.	Encrypt CBC using PKB to get M0, M0 = E(PKB,
CBC).

2.	For each authorized file fi in I1, compute FBCi
using Equation 3 and encrypt it using PKB to get
Mi, Mi = E(PKB, FBCi), i ∈ [1, n].

3.	Get I7 = M0||M1||, . . ., ||Mn, i ∈[1, n].

The authorization credential contains only the
first five items, which have nothing to do with the
credential owner’s identity. Items I6 and I7 are de-
signed for the cloud server and the credential owner,
respectively, and are related to the identity of cre-
dential owner B by the CBC, which is used to bind
B and the credential by HMAC(KOA, CN||IDB).
Obviously, CBC can hide IDB from anyone. Because
none of credential owner B’s identity information is
exposed, the authorization credential can be regard-
ed as anonymous.

Scheme Description
The proposed ciphertext access control scheme in-
cludes four function modules: file management, au-
thorization, access control, and authorization revok-
ing. In essence, the last three function modules are
elements of authorization management. Figures 3
and 4 show diagrams of file management and autho-
rization management, respectively.

File Management
Similar to existing cloud storage systems, registered
data owners can log into their accounts to manage
their files. The main differences are the processes
for creating and modifying files. Because a data
owner A can derive a file key from its secret key, the
data owner uses the parent directory key KPi of fi to
encrypt the key of a new file in it.

Creating a file. Creating a file means creating a di-
rectory or uploading a data file to the data owner’s
account in the cloud. For a registered user A (that is,
the data owner), constructing a CFR for fi requires
performing the following eight steps:

1.	Choose a random number ri from [1, p], and
calculate its key according to Equation 1, KFi =
HMAC(ri, fi).

2.	Encrypt KFi with KPi, CKi = E(KPi, KFi).
3.	 If the new file is a directory, let Fi be fi. Encrypt

Fi with KFi and get CFi = E(KFi, Fi).
4.	Compute FBCi = HMAC(KOA, fi).
5.	Construct a linear function gi(x) = KFi × x

+ FBCi on a finite field Zp for fi and compute
the secret sharer MFi for CFi, MFi = KFi ×
Hash(CFi) + FBCi.

6.	Compute MDi = Hash(CFi).
7.	Compute Hi = Hash(Creating|| fi||CFi||CK i

J U LY/A U G U S T 2 0 1 5 	 I EEE CLO U D CO M P U T I N G� 3 9

Cloud service provider
(datacenter)

Data owner
(cloud user A)

CFR
Verify the validity of CFR and
construct an acknowledgement
message ACK according to the
verification.

Verify the validity of MFR and
construct an acknowledgement
message ACK according to the
verification.

ACK

Act according to ACK.

Construct file creating
request message CFR.

File Creating

File Modifying

Make modification on a file and its
related data, and construct file modifying
request message MFR.

MFR

ACK

Act according to ACK.

FIGURE 3. File management. (a) In the file creation stage, data user A constructs a create file request (CFR) ac-

cording to the format shown in Figure 1. (b) In the file modification stage, a modify file request (MFR) is con-

structed similarly to the CFR.

Cloud server
(datacenter C)

Data user
(cloud user A)

Data sharer
(cloud user B)

Construct an authorization
information AMC and AMB.

Verify the AMB. If it passes
the verification, accept the
authorization.

Verify the AMC. If it passes
the verification, keep the
authorization.

Construct access request
message AFM and send it to
the cloud server.

Construct an identity proof
message IPM.

AMC

AMB
Authorization

AFM

Verify the validity of AFM.
If it passes the verification,
construct an identity
verification message IVM.

IVM

IPM

Verify the validity of IPM and
construct an acknowledgment
message ACK.

ACK Access the file or stop
according to ACK.

Access control

Construct an authorization
revoking request message ARM.

ARM
Verify the validity of ARM and
construct an acknowledgment
message ACK.

Act according to ACK.

ACK

Authorization
revoking

FIGURE 4. Authorization management. (a) Authorization information should be constructed according to two cases, for the cloud

server and data sharer, respectively. (b) Access control involves only the cloud server and data sharer. The cloud server uses an

access request message (AFM), identity verification message (IVM), and identity proof message (IPM) to access the encrypted file.

The data sharer uses an acknowledgment message (ACK) to reconstruct the file key. (c) Authorization revocation is launched by

the data owner and accomplished by the cloud server.

40	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

LE
G

A
L

C
LO

U
D

S

||MFi||MDi), and add a signature to it, SHi =
Sig(SKA, Hi).

8.	Let CFR = Creating|| fi||CFi||CKi||MFi||MDi

||SHi||IDA, and send it to the cloud server.

After receiving the CFR, the cloud server veri-
fies it using PKA. If it passes verification, fi will be
stored in A’s cloud account in the format shown in
Figure 1. Meanwhile, the cloud server will send a
“success” ACK to A; otherwise, it will send an “error”
ACK to A.

Modifying a file. When a data owner A wants to
modify its file fi stored in the cloud, it performs the
following six steps.

1.	Make modification on fi or Fi to obtain fi′ or Fi′.
2.	 If fi ≠ fi′ or A wants to update KFi, choose a ran-

dom number ri′ from [1, p], and compute KFi′ =
HMAC(ri′, fi′); otherwise, let KFi′ = KFi.

3.	Perform the operations in “creating a file” from
steps 2 to 6 to get CKi′, CFi′, FBCi′, MFi′, and
MDi′, respectively.

4.	Compute Hi′ = Hash(Modifying|| fi|| fi′||CFi′||CKi

′||MFi′||MDi′).
5.	Make a signature on Hi′ and get SHi′ = Sig(SKA,

Hi′).
6.	Let MFR = Modifying|| fi|| fi′||CFi′||CKi′||MFi′||M

Di′||SHi′||IDA, and send it to the cloud server.

After receiving the MFR, the cloud server will
verify it using PKA. If the file passes verification, the
cloud server checks whether fi is in A’s account or
not. If it is, it deletes fi and stores fi′ in the format
shown in Figure 1 in the proper location, and sends
a “success” ACK to data owner A; otherwise, it sends
“error” to A.

Authorization
Authorization includes both whole and partial au-
thorization. Whole authorization is used when
there’s no valid authorization credential for the data
user. In this case, the whole authorization creden-
tial should be constructed on the authorized files.
The authorization information for the cloud server
(AMC) is set to “I1||I2||I3||I4||I5||I6,” and the authoriza-
tion information for the data user B (AMB) is set to
“I1||I2||I3||I4||I5||I7.”

Partial authorization is used when there’s a
valid authorization credential for data user B, and
data owner A wants to add some authorization to
it. Here, the data owner just needs to tell the cloud
server and the data sharer the added authoriza-
tion information instead of the whole credential.

For this purpose, the file list granted to B should
be constructed and denoted by Pf. Accordingly,
the file binding code for each file in Pf should be
computed and encrypted by PKB to get the FBC
list, which is denoted Mf. For the cloud serv-
er, AMC is set to “Adding||IDA||CN|Pf ||Sig(SKA,
Hash(Adding||IDA||CN||Pf)),” and for B,
AMB is set to “Adding||IDA||Pf ||Mf ||Sig(SK A,
Hash(Adding||IDA||Pf ||Mf)).”

Access Control
Access control includes two aspects. One is mak-
ing access control on the ciphertext, and the other
is file key reconstruction. For the former, five steps
are needed.

Data user B performs step 1, which includes:

•	 Decrypt M0 in I7 of the authorization credential
to get CBC.

•	 Construct an access request “ fi||II3||I4|| E(PKC,
CBC)” and send it to cloud server C.

Cloud server C performs step 2, which involves
checking whether the credential is valid and fi is
an authorized file of the authorization credential.
If yes, it decrypts E(PKC, CBC) to compute UVC =
HMAC(CBC, CN). If UVC = I3, generate a random
number r from [1, p] and let ACK be E(CBC, r); oth-
erwise, let ACK be “error.”

In step 3, data user B decrypts E(CBC, r) with
CBC, and encrypts (r + 1) with CBC and sends it
to C.

In step 4, cloud server C checks whether
D(CBC, E(CBC, (r + 1))) = (r + 1) or not. If not, let
ACK be “error”; if so, there are two cases:

•	 ACK = E(CBC, CFi||MFi||MDi), if fi is in I1.
•	 ACK = E(CBC, CFj||MFj|| . . . CKp||CFi||CKi||MDi),

if fi is not in I1, but its ancestor directory fj is in I1.
Here, “ . . . CKp” denotes that all CKs are in the
path of fj to fp.

In step 5, data user B reconstructs the file key
according to ACK. If the ACK is “error,” stop the
reconstruction; otherwise, decrypt it and verify the
integrity of CFi. If it does not pass verification, stop;
otherwise, reconstruct the file key as follows:

•	 if fi is in I1, decrypt Mi with CBC to get FBCi;
compute KFi = (Hash(CFi))

–1 × (MFi – FBCi);
•	 otherwise, decrypt Mj with CBC to get FBCj;

compute KFj = (Hash(CFj))
–1 × (MFj – FBCj),

and derive KFi from KFj and the CK of each of its
ancestor stepwise.

J U LY/A U G U S T 2 0 1 5 	 I EEE CLO U D CO M P U T I N G� 4 1

After obtaining the decryption key of the re-
quested file, data user B can decrypt its ciphertext
CFi with it and get its plaintext Fi to read.

Authorization Revoking
Authorization revoking is launched by the data own-
er and accomplished through collaboration of the
data owner and cloud server. It includes three steps:

1.	Data owner A constructs a revoking file list
denoted by Rf, and makes a signature on
Hash(Revoking||IDA||CN||Rf) to get SR = Sig(SKA,
Hash(Revoking||IDA||CN||Rf)). It then sends
“Revoking||IDA||CN||Rf ||SR” to cloud server C.

2.	Cloud server C verifies SR with PKA. If SR passes
verification and the credential with CN is in A’s
authorization credential list, for each file in Rf, if
it is in I1, delete it from both Rf and I1. If I1 is emp-
ty, remove the credential from the credential list,
and let ACK be Sig(SKC, SR); otherwise, let ACK
be “error.” And then sends ACK to data owner A.

3.	 If ACK isn’t “error,” data owner A verifies
Sig(SKC, SR) with PKC. If it passes verification,
delete the file names in Rf from I1. If I1 is empty,
delete the credential.

The process of authorization revoking requires
the data owner and the cloud server to authenticate
each other so as to keep the consistency of the cre-
dential in both sides.

Security and Performance Evaluation
To evaluate the proposed scheme, we use methods
described elsewhere to analyze security and perfor-
mance.13,14 We also analyze the overheads, consider-
ing the aspects of key management and authoriza-
tion management.

The scheme’s security is guaranteed by linear
secret sharing and symmetric and asymmetric theo-
ry. We assume that all algorithms and functions are
secure.

For confidentiality, we encrypt the data in the
cloud using a security symmetric cryptographic algo-
rithm, which makes the data secret from the cloud
server. The key distribution is based on the idea of
linear secret sharing, and only the authorized user
can obtain secret sharers, which also keeps it secret
from unauthorized users. So, the encryption opera-
tion is limited to authorized users and the data owner.

The hash function and the signature based on
the asymmetric algorithm are jointly used to guaran-
tee data integrity. Both the cloud server and the au-
thorized user can check data integrity as necessary.

Authenticity is guaranteed through authentica-

tion, which is realized by a signature based on an
asymmetric algorithm or a symmetric cryptographic
algorithm. For instance, both a signature and en-
cryption are used in access control; the former helps
the cloud server verify the credential’s authenticity,
and the latter helps it guarantee that the user is the
authorization credential owner.

Fine-Grained Access Control
Access control granularity can be refined to a basic
data unit and a basic access entity. In this scheme,
the data owner can specify who can access which
file (such as a data block, data file, or directory) dur-
ing a certain valid period based on a specific autho-
rization credential. The authorization credential is
bounded with its data owner anonymously, and also
stays consistent with the data users.

Scalability
In this scheme, the size of the encrypted data and the
length of the parameters are relatively independent of
the number of data users. Adding a data user means
issuing it an authorization credential, and there’s no
change to the data in the cloud, and it doesn’t involve
the cloud server or affect other data users either.
Thus, adding a data user doesn’t cause an obvious
performance decline or cost within the system.

Overhead
For simplicity, we measure computational overhead
using an approach in which one bilinear pairing is
about 20 point scalar multiplications, and one mod-
ular exponential operation is two point scalar mul-
tiplications.15 Because the overheads for symmetric
cryptography and hash/HMAC are much less than
those for public key operations, we consider only the
public key operations.

Key Management
In this scheme, distributing a file key involves 1 el-
liptic curve cryptography (ECC) encryption and de-
cryption. Key updating doesn’t affect authorization
and the FBC, and only symmetric encryption and ar-
ithmetical operations are needed. Assume we use the
elliptic curve integrated encryption scheme (ECIES)
to perform ECC encryption and decryption, and we
need only three point scalar multiplications.

In traditional ABE schemes, key distribution
needs one decryption involving one more bilinear
pairing. Key updating involves one encryption oper-
ation. There are at least two bilinear pairings, which
are about 40 point scalar multiplications. It can be
seen that the cost for our key management is much
lower than that of other ABE schemes.

42	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

LE
G

A
L

C
LO

U
D

S

Authorization management includes both grant-
ing and revoking authorizations. In this scheme,
authorization granting aims to issue an authoriza-
tion credential. One ECC-based encryption and one
signature are needed for a credential and (n + 1)
ECC-based encryptions are needed for n files in an
authorization credential. To revoke an authorization,
if the authorization credential is for a single user, only
one ECC-based signature is needed. If the authori-
zation credential is for a group of users and the data
owner wants to revoke some members’ privilege, the
data owner will revoke one credential and issue one
credential; only one ECC-based signature and (n + 1)
ECC-based encryptions are needed. Assuming that
n  15 and ECDSA is used for signature and ECIES
is used for encryption, one signature and (n + 2) 
17 encryption are needed, which is about 35 point
scalar multiplications.

In typical ABE schemes, an access control policy
is usually associated with the private key or ciphertext.
Authorization is embedded in the encryption process,
which needs at least one bilinear pairing mapping.
Updating the access policy requires reencrypting the
changed attribute set. Even the “lazy” reencryption
strategy can be postponed; the expensive reencryption
(at least one bilinear pairing mapping) is inevitable.
Authorization revocation also means that changing
and reencrypting attributes are unavoidable. Thus,
at least three bilinear pairing mappings are needed,
which is equivalent to 60 point scalar multiplications.

It turns out that the overhead of authorization
management is much lower than that in other ABE

schemes. Additionally, the proposed scheme pro-
vides partial revoking, which realizes flexible autho-
rization management. Table 2 summarizes the per-
formance analysis.

he proposed access control scheme is anony-
mous, lightweight, fine-grained, and scalable,

but it’s designed only for ciphertext access control
and can’t meet the access control requirements of
other cloud applications. In the future, we’ll try to
balance the costs on the user side and the expense
of using cloud resources to develop a practical ser-
vice access control scheme.

Acknowledgments
This work was supported by National Natural Sci-
ence Foundation of China under grant 61471035. It
was jointly supported by the Fundamental Research
Funds for the Chinese Central Universities un-
der grant 06105031. This work was also supported
by Science and Technology Foundation of Beijing
(Z141100002714003). Xuanxia Yao is the corre-
sponding author.

References
1.	V. Kher and Y. Kim, “Securing Distributed

Storage: Challenges, Techniques, and Systems,”
Proc. ACM Workshop Storage Security and
Survivability (StorageSS 05), 2005, pp. 9–25.

2.	S. Yu et al., “Achieving Secure Scalable and Fine-
Grained Data Access on Cloud Computing,”

Table 2. Performance description.

Property Description Technology method

Security Confidentiality Encryption based on symmetric cryptographic algorithm

Integrity Hash, HMAC

Authenticity Authentication based on elliptic curve cryptography (ECC)

Key distribution Authorization credential and secret sharing based on the
Lagrange interpolation function

Fine-grained access control Object granularity From a data block to a directory

Authorized entity A user or user group

Dynamic Data user’s variability Easy to add or delete a data user

Scalability Ability to increase the number of
data users without decreasing the
performance

Adding a new data user involves issuing an authorization
credential to it, which does not affect the data and other
data users.

Accountability Ability to revoke the anonymity The collaboration of the cloud server and the data owner

Overhead Key management Three point scalar multiplications for a file

Authorization management At most 17 point scalar multiplications

J U LY/A U G U S T 2 0 1 5 	 I EEE CLO U D CO M P U T I N G� 4 3

Proc. 29th Conf. Information Comm. (INFORM
10), 2010, pp. 534–542.

3.	A. Lewko and B. Waters, “New Techniques for
Dual System Encryption and Fully Secure HIBE
with Short Ciphertexts,” Proc. 7th Theory of
Cryptography Conf. (TCC 10), 2010, pp. 455–479.

4.	V. Goyal et al., “Attribute-Based Encryption
for Fine-Grained Access Control of Encrypted
Data,” Proc. 13th ACM Conf. Computer and
Comm. Security (CCS 06), 2006, pp. 89–98.

5.	Z. Yan, X. Li, and R. Kantola, “Controlling
Cloud Data Access Based on Reputation,”
Mobile Networks and Applications, Mar. 2015;
doi: 10.1007/s11036-015-0591-6.

6.	H.T. Dinh et al., “A Survey of Mobile Cloud
Computing: Architecture, Applications, and
Approaches,” Wireless Comm. and Mobile
Computing, vol.13, no.18, 2013, pp. 1587–1611.

7.	H. Liu et al., “Shared Authority Based Privacy-
Preserving Authentication Protocol in Cloud
Computing,” IEEE Trans. Parallel and Distributed
Systems, vol. 26, no. 1, 2015, pp. 241–251.

8.	A. Ahmad, M.M. Hassan, and A. Aziz, “A Multi-
Token Authorization Strategy for Secure Mobile
Cloud Computing,” Proc. 2nd IEEE Int’l Conf.
Mobile Cloud Computing, Services, and Eng.,
2014, pp. 136–141.

9.	N.M. Gonzalez et al., “A Framework for
Authentication and Authorization Credentials in
Cloud Computing,” Proc. 12th IEEE Int’l Conf.
Trust, Security and Privacy in Computing and
Comm. (TRUSTCOM 13), 2013, pp. 509–516.

10.	D. Jana and D. Bandyopadhyay, “Management
of Identity and Credentials in Mobile Cloud
Environment,” Proc. Int’l Conf. Advanced
Computer Science and Information Systems
(ICACSIS 13), 2013, pp. 113–118.

11.	M.J. Atallah et al., “Dynamic and Efficient
Key Management for Access Hierarchies,”
ACM Trans. Information and System Security
(TISSEC), vol.12, no.3, 2009, article no. 18.

12.	I.N. Bozkurt, K. Kaya, and A.A. Selçuk, “Practical
Threshold Signatures with Linear Secret
Sharing Schemes,” Progress in Cryptology—
AFRICACRYPT 2009, LNCS 5580, Springer,
2009, pp. 167–178.

13.	A.N. Khan et al., “Towards Secure Mobile
Cloud Computing: A Survey,” Future Generation
Computer Systems, vol. 29, no.5, 2013, pp.
1278–1299.

14.	S.S.M. Chow et al., “Cryptography and Security-
Dynamic Secure Cloud Storage with Provenance,”
Cryptography and Security: From Theory to
Applications, LNCS 6805, Springer, 2012, pp.

442–464.
15.	V.G. Martínez, L.H. Encinas, and C.S. Ávila,

“A Survey of the Elliptic Curve Integrated
Encryption Scheme,” J. Computer Science and
Eng., vol. 2, no. 2, 2010, pp. 7–13.

XUANXIA YAO is an associate professor in the
School of Computer and Communication Engineer-
ing at the University of Science and Technology Bei-
jing. Her research interests include network security,
the Internet of Things, and cloud computing. Yao has
a PhD in computer science from the University of Sci-
ence and Technology Beijing, China. She’s a member
of the China Computer Federation. Contact her at
yaoxuanxia@163.com.

HONG LIU is a research fellow at the Engineer-
ing Laboratory, Run Technologies Co., Ltd., Beijing,
where she focuses on the security and privacy issues
in RFID, vehicle-to-grid networks, and the Internet
of Things. Her research interests include authentica-
tion protocol design, and security formal modeling
and analysis. Liu has a PhD in circuits and systems
from the School of Electronic and Information Engi-
neering, Beihang University, China. She’s a member
of IEEE. Contact her at liuhongler@ieee.org.

HUANSHENG NING is a professor in the School
of Computer and Communication Engineering, Uni-
versity of Science and Technology Beijing, China.
His current research interests include the Internet of
Things, aviation security, electromagnetic sensing,
and computing. Ning has a PhD in information and
communication engineering from Beihang Univer-
sity. He’s a senior member of IEEE. Contact him at
ninghuansheng@ustb.edu.cn.

LAURENCE T. YANG is a professor in the Depart-
ment of Computer Science at St. Francis Xavier Uni-
versity, Canada. His research interests include parallel
and distributed computing and embedded and ubiqui-
tous/pervasive computing. Yang has a PhD in computer
science from the University of Victoria, Canada. He’s a
member of IEEE. Contact him at ltyang@stfx.ca.

YANG XIANG is the director of the Network Se-
curity and Computing Lab (NSCLab). His research
interests include network and system security, dis-
tributed systems, and networking, and he’s currently
leading his team in developing active defense systems
against large-scale distributed network attacks. Xiang
has a PhD in computer science from Deakin Univer-
sity, Australia. He’s a senior member of IEEE. Contact
him at yang@deakin.edu.au.

