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ABSTRACT
Internet of Things (IoT) is expanding rapidly and so is the number of devices, sensors and actu-
ators joining this world. IoT devices are an important part of the data collection process in Big
Data systems, so by protecting them we support and improve the security of the whole system.
ZigBee is a secure communication system for the underlying Internet of Things (IoT) infrastruc-
ture. Even though ZigBee has a strong security stack built on a variety of secret keys, ZigBee
devices are vulnerable to the side-channel and key extraction attacks. Due to the low cost and
limited resources, most ZigBee devices store their secret keys in plaintext. In this paper, we focus
on protecting the storage of ZigBee secret keys and show how Physical Unclonable Functions
(PUFs) can help the ZigBee devices to be robust tamper-resistant against the physical attacks.
The proposed schemes include PUF-based key storage protection and key generation. The exper-
iments in this paper were done using SRAM-PUF. Furthermore, two algorithms were proposed
to overcome the defects in the randomness of keys generated using SRAM-PUF and, at the same
time, to increase the reliability of these keys. We were able to significantly improve the hardware
security of ZEDs by protecting their keying materials using costless, high secure, random, stable
and volatile PUF-based secret keys.

1. Introduction
With the rapid development of IoT and the emerging of new technology applications and projects, such as smart

home, intelligent transport, smart cities and smart energy, many researchers and companies start to pay more attention
to the IoT communication infrastructure in order to handle the fast growth in the number of connected devices [24]. As
a result, new communication systems have been introduced to meet the demands of low-power consumption, devices
management and ensuring the security of the connection by applying ciphering and policies. In addition, new tech-
nologies such as blockchain have been deployed to build a decentralized and trustworthy structure for ID management
in IoT [19]. With the penetration of IoT into our daily life, sensors are sending sensitive data which could be medical
or personal [17]. Therefore, there are many proposed researches to protect the end-user data whether they are on the
infrastructure level [13], the cloud storage level [18] or any point along the IoT system architecture. IoT security is
non-negotiable, and it is mandatorily required in every new technology joining the IoT world [6].

ZigBee was invented as a new communication system to be used in IoT underlying infrastructure in order to satisfy
the demands of security, scalability and power consumption management. It is an open stack suitable for the sensing
and control networks. In addition, it provides a good built-in security scheme at both of the network and the appli-
cation layers. The security services provided by ZigBee include methods for key establishment, key transport, frame
protection and device management. ZigBee security system deploys a variety of secret keys which can be used by IoT
applications to guarantee secure transmission of the raw data and control commands. Since all messages sent over
the air are secured with ZigBee secret keys, ZigBee security services are tightly correlated to the safe installation and
storage of the keys materials [2]. However, invoking these secret keys will break the whole system down and could
lead to severe problems. As shown in Table 1, there are six types of secret keys defined by the ZigBee Alliance. Some
of them, such as master key, link key and network (NWK) key, could be pre-configured and stored in the Non-Volatile
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Table 1
ZigBee Secret Keys

Key type Acquirement Description

Master key Via key-transport or pre-installation It is shared between two devices to ensure long-term
end-to-end communication, besides generating link keys
for these devices.

Link key Via key-transport, key-establishment,
or pre-installation

It is exclusively shared between two devices for securing
unicast (end-to-end) communication.

Network key Via key-transport, key-establishment,
or pre-installation

It is shared by the whole network devices for securing all
the messages on the network layer level and broadcast
communications.

Key-load key Derived from link key after executing
specialized keyed hash function

It is used to protect key transport messages carrying the
master and link keys.

Key-transport key Derived from link key after executing
specialized keyed hash function

It is used to protect key transport messages carrying
NWK keys.

Data key Equal to the link key It is used to protect data messages.

Memory (NVM), while the others, such as data-key key, key-load key and key-transport key, are derived from the
link key during the runtime by executing keyed Hash Message Authentication Code (HMAC) [2]. Even though each
layer in ZigBee has its own secret keys, ZigBee standard allows NWK keys to be used at both of the network and the
application layers. Because each layer runs its own ciphering operations, the secret keys at different layers should not
be the same to avoid unnecessary iteration encryption using the same secret key. All the secret keys used in ZigBee,
mentioned in Table 1, need protection to ensure ZigBee network security. The most serious attack targeting the secret
keys is reading them out from the NVM. In secure ZigBee network, at least one key (master key or link key) should
be pre-installed in the device before it is deployed in the system, in which way the device can safely receive the active
NWK key sent by the Trust Center (TC) and encrypted by key-transport key. Most of ZigBee devices are configured
with Advanced Encryption Standard (AES) specified-hardware which is usually a co-processor for executing AES
encryption/decryption operations because AES-128 is the only cryptographic algorithm adopted by ZigBee Alliance
[2].

Nowadays, physical attacks against cryptography systems represent a big challenge to the modern technologies
due to the advanced tools used by attackers in order to extract critical information from the hardware devices (known
as side-channel attacks) or inject false data in an attempt to break the system security down (known as fault injection
attacks) [3]. All that threatens the plaintext traditional key storage of the security systems especially in the high-risk
areas. Cryptographic algorithms in modern technology are so strong that they can protect the logical links between
endpoint devices. Therefore, physical devices have become the most vulnerable point in the whole security system
[20]. As a result, many researchers are working on hardware security because physical attacks are as dangerous as
other threats and can endanger the security of IoT in general and the Field Programmable Gate Arrays (FPGA) devices
in particular [16].

Hardware Intrinsic Security (HIS) is one of the strongly recommended solutions to enhance the hardware security
of devices starting by, but not limited to, securing secret key storage. One of the famous HIS implementations is Phys-
ical Unclonable Function (PUF). The main concept of PUF is extracting useful information from the intrinsic physical
properties of the objects. Researchers found that slight mismatches in some physical characters, such as threshold volt-
age and mobility in Metal-Oxide Semiconductor (MOS), still exist even when producing identical electronic elements
because of uncontrollable production variations. Nowadays, there are many types of PUFs which use different mis-
matches sources and can meet the hardware key requirements of being random, unpredictable, and tamper-resistant.
Any attempt to remove the PUF will come with a high risk of destroying it and wasting the key forever [22]. PUF could
be used for circuit identification, such as assigning an ID to a circuit or a device [10], as a seed for a pseudo-random
number generator [1], as a secret key generator [12] and for authentication using Challenge-Response pairs (CRPs)
[23].

The most commonly used PUF for securing the storage of secret keys are the memory-based PUFs for two reasons
[7]: first, their components, such as SRAM, latches and flip-flops, are widely used by electronic devices or FPGAs;
Farha et al.: Preprint submitted to Elsevier Page 2 of 13
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second, generating the memory-based PUFs output when needed is relatively easier and quite faster than generating
the output of other categories.

In this paper, we focus on Static Random Access Memory (SRAM-PUF) [15] to be used in protecting ZigBee keys
storage. SRAM-PUF output is generated by reading the Start-up Values of SRAM Cells (SVSCs) of the local devices.
We choose SRAM-PUF because SRAM is already used as a fast memory in many electronic systems nowadays, and
thus, there is no need to add extra components to benefit from the PUF. The key contributions of this paper are as
follows;

• Two algorithms were proposed to overcome the defects in the randomness of keys generated using SRAM-PUF
and, at the same time, to increase the reliability of these keys.

• We have proved that SRAM-PUF can effectively protect the keying materials of ZigBee devices whether by
generating the secret keys or by securing the secret keys stored in the NVM of the local device with no need to
install any new equipment.

The remaining part of this paper is organized as follows: Section II is a literature review; Section III covers SRAM-
PUF experiments and improvements; Section IV is about securing ZigBee devices using PUF; Section V concludes
our work and future work.

2. Related Works
SRAM-PUF was introduced by Guajardo et al. in [11] and Holcomb et al. in [15] where PUF randomness comes

from the SVSCs. Each SRAM cell can represent one bit which could be 0 or 1. Choosing one of those initial states
when the SRAM cell is powered on corresponds to the production process variations of its components, especially the
MOS transistors, which makes the initial states random and unpredictable. Experimental results in previous researches
[15] showed that the majority of the cells are more likely to start in the state "1". As a result, the inter-die Hamming
Distance (HD), which is the average of aggregated differences between the bits from each tested memory and that
from the same location in other memory chips, was 27.62%, and the intra-die HD, which is the average of aggregated
differences obtained by reading the same memory cells for multiple times, was 4%. To solve the unbalanced 0:1 ratio
of the SVSCs, some researchers [21] [8] have proposed hardware modifications to the SRAM structure. In this paper,
we focused on using software solution instead of the hardware one for two reasons; first to keep the currently used
devices without the need to change their local memories in order to be used as PUF; second, the IoT devices have
microprocessors and can run some codes originated to mitigate the inequality of the 0s and 1s numbers and meanwhile
keep the randomness and stability of PUF output. Therefore, we have proposed two algorithms to increase the inter-die
HD, and meanwhile reducing the intra-die HD of the SRAM-PUF generated keys. After being fixed, the PUF output
will be ready to be used for protecting the secret keys.

In other researches [7], Eichhorn et al. in order to protect the storage of secret keys, they suggested encrypting
the whole external memory where the secret keys are stored. It is a good idea which will not only protect the secret
keys but also protect the installed firmware. However, it is non-feasible for IoT small devices with limited resources,
because it will take them long time to decrypt the whole firmware in order to keep the communication stack (ZigBee
stack) running well. What is more, the stack is big to be decrypted and then runs from internal RAM. Therefore, from
another point of view, we can just encrypt a small part of the memory which contains the secret keys and the sensitive
data. That is exactly what we have done in this paper. We used PUF to encrypt the part of the memory, where the
secret keys are stored, to make them safe and hard to expose or analyze.

Moreover, SRAM-PUF is used as a hardware key, so once the PUF is compromised, it will be invalid forever
and the hardware chip, from which it is generated, should be replaced. To avoid such a situation, we need to protect
the inputs and outputs of the PUF. There should be no direct access to the PUF unit except the board itself. Thus,
"Controlled PUF" idea was proposed in [9] where all inputs and outputs of PUF are covered and cannot be accessed
except by the processor. In this paper, we used SRAM, which is only connected to the processor and cannot be read
outside the microcontroller, as the PUF. However, some parts of the RAM could be directly connected to input/output
pins called Direct Memory Access (DMA), which can be read directly from the device outside. As a result, memory
cells assigned as DMA cannot be used as PUF for the aforementioned security reason.

Even though PUF seems to be the best solution to hardware security issues, every PUF-proposed architecture has
some physical-related problems still under discussion. Environmental conditions [4], such as power-supply voltage
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Figure 1: The Reliability of the SRAM Cells Represented by the Number of Cells Which Belong to the Same Reliability
Category

changes and temperature variations, can also affect the PUF output. As a result, Error Correction Code (ECC) al-
gorithms should be used to correct the noisy PUF output caused by these conditions. The more the cells need to be
corrected, the larger the size of the generated helper data is required. Generating the helper data and the storage space
needed to store it are the only extra requirements for deploying SRAM-PUF in the ZigBee security system.

To sum up, the ZigBee secret keys cannot be stored in NVM their plaintext format because that will threaten the
whole system in case they are exposed. On the other side, the whole NVM cannot be encrypted to protect the secret
keys especially in the case of limited-resource ZigBee devices since there is not enough RAM to decrypt the encrypted
content and run the system simultaneously. Therefore, in this paper, we have proposed a low-cost, fast and secure
technique to ensure the ZigBee hardware security using SRAM-PUF, which is already a part of the SRAM of the local
device (no extra cost), by encrypting only the secret keys part or generating the required secret keys without the need
to store them in NVM. In addition to increase the randomness of the keys generated using SRAM-PUF by proposing
two algorithms which guarantee to keep on the PUF random output and generate stable and reliable secret keys.

3. The Proposed SRAM-PUF Based Secret Key Scheme
3.1. SRAM-PUF based Encoding Method

SRAM-PUF is used to generate a hardware key, and the experiment is done by using the ZigBee devices Texas
Instruments CC2530 which have SRAM memory with the size of 256B. In order to calculate the reliability of SVSCs,
we read the SVSCs 100 times for each device. Then, we calculate how often each individual cell start with 0 and 1.
After counting the iteration rate of 0 and 1 value readings for each cell, we marke the cells as 0-biased or 1-biased
depending on the most frequent reading value. i.e. If a specific cell starts as "1" with rate of 80% and as "0" with rate
of 20%, it is marked as "1-biased" cell. At the end of the process, we are able to divide the memory cells into three
groups:

• 0-biased cells which are more likely to start with 0;
• 1-biased cells which are more likely to start with 1;
• neutral cells which have no strong tendency to start with 0 or 1. In this case, the iteration rate of 0 or 1 is near

to 50%.
As shown in Figure1, the 1-biased or 0-biased cells have different degrees of reliability. 82% of the cells are 100%

reliable, which means about 1680 bits of 2048 bits (256B) in the memory always start as 1 when they are 1-biased and
as 0 when they are 0-biased, 10.5% of the memory cells are 95% reliable which equivalents to 215 bits of 2048 bits and
so on. The total reliability of the whole memory is 95.6% calculated by the equation 1-HDintra where HDintra is 4.4%.
Farha et al.: Preprint submitted to Elsevier Page 4 of 13
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Algorithm 1 The Initial Phase: Generating The Hardware Key
1: start ← suitableStartingAddress
2: reliabiltyRate ← %100
3: i ← 0 , j ← 0
4: while i < keyLength do
5: if ReliabiltyOfCell[start+j] = reliabiltyRate then
6: KeyBits[i] ← Memory[start+j]
7: KeyCellAddresses[i] ← start+j
8: i ← i+1
9: end if
10: j ← j+1
11: if j = memorySize-start then
12: reliabiltyRate ← reliabiltyRate-1
13: j ← 0
14: end if
15: end while
16: seedIndex ← KeyBits([0][1][2][3][4])
17: GenerateBCHhelperData(KeyBits)

This experiment is done on 20 ZigBee devices under the normal temperature 25 C◦. According to the experimental
results, ECC algorithms are needed to correct the SVSCs readings because some of the 1-biased cells could start as 0
or vice-versa for some reason related to environmental conditions or the reliability degree of cells. Changing one bit of
secret key endangers the whole cryptography system, and since the secret hardware key generated using SRAM-PUF
bits is 128-bit length, the reading error is expected in only up to 6 bits for the worst scenario based on the 95.6%
reliability value obtained from the experiment. In this paper, we use BCH [14, 5] for correcting the noisy output. The
more the cells need correcting, the larger the helper data size is required.

One practical solution to lower bit error rate and reduce the helper data size is to generate the key bits starting by
the highly reliable cells until the device finishes generating the whole key. That is what we do in the Algorithm 1. This
process runs on the manufacturer side where the manufacturer first excludes the unreliable cells from the key. To do
that, the whole manufactured memories are scanned for multiple times, and then an array called ReliabilityOfCell is
filled with the reliability rate of each memory cell. After that, the manufacturer chooses an address to start reading the
key bits. This address can be any address, but it is preferred not to start with the first 32 bits (which are usually used by
the CPU registers) or any bits that are located on the Special-purpose registers area. To sum up, it can be any address
whose contents are not changed by the running program until the completion of key extraction. In our experiment, the
starting address is 0x90. After the manufacturer chooses a suitable starting address, the algorithm begins to build the
key starting by the 100% steady cells. keyLength in Algorithm 1 represents the secret key length which was 128 in our
experiment because we are building ZigBee secret keys. If the 100% steady cells are not enough to generate keyLength
bits, the algorithm moves to the 99% steady cells and so on. During the key building process, key bits’ addresses are
saved and stored in an array called KeyCellAddresses. When the whole key is generated, ECC algorithm which is BCH
in this paper proceeds to generate the helper data which will be sent with the addresses of the key bits to the end user
for correcting the generated secret keys in the future. There is also another value called seedIndex consists of the first
five bits of the generated key and will be used later in Algorithm 2. There are many ways to deliver the helper data and
the addresses to the end users, for example, they can be sent in form of a QR code stacked on the packing box or be
saved on the NVM. There is no risk if the attacker accesses and obtains the helper data because the helper data itself is
not enough to generate the secret key. The same is for the key bits’ addresses since the attacker needs a map of SVSC
of the end user device to build the secret key. By running Algorithm 1, we are able to reduce intra-HD of the generated
key from 4.4%, to less than 2%. The experimental result is very close to the ideal value of intra-HD which is 0%.

The other issue discussed in details in this paper is the inter-HD value. The average difference between the SVSCs
from a specific device and that from other devices is about 30.65%. Since the ideal value of inter-HD between the PUF
units is 50%, the SRAM-PUF output needs to be modified in order to make the inter-HD as close as possible to the ideal
value. The main shortage, which makes the values fail to meet the PUF required measurements, is that the majority of
SRAM cells (about 78%) start with 1 and the rest (about 22%) start with 0. As a result, when a 128-bit hardware key

Farha et al.: Preprint submitted to Elsevier Page 5 of 13



Short Title of the Article

Algorithm 2 The Enrollment Phase: Randomizing The Hardware Key
1: read KeyCellAddresses
2: for i = 0 → keyLength-1 do
3: KeyBits[i] ← Memory[KeyCellAddresses[i]]
4: end for
5: BCH(KeyBits)
6: seedIndex ← KeyBits([0][1][2][3][4])
7: currentPos ← seedIndex
8: for i = 0 → zerosConvertedNumber - 1 do
9: if KeyBits[currentPos]=1 then
10: KeyBits[currentPos] ← 0
11: else
12: while KeyBits[currentPos] ≠ 1 do
13: currentPos ← (currentPos+1) mod 128
14: end while
15: KeyBits[currentPos] ← 0
16: currentPos ← (currentPos + seedIndex) mod 128
17: end if
18: end for

is purely extracted from the raw data of SVSCs, it has the same 0 to 1 ratio i.e. the extracted key contains 30 zeros and
98 ones of 128 bits. After getting the 0s to 1s ratio of the extracted keys, we used the programming language Python
to generate files that contained a large number of secret keys with the same 0s number and 1s number relation. Then
we calculated inter-HD between the generated secret keys which was 34.3979%.

Generally speaking, for each key of 128-bit length, about 44 bits are different comparing with other secret keys bits.
This difference rate enables us to generate about 17.6 ∗ 1012 distinct secret keys. Even though it is a very big number,
we already know what invoke the randomness of secret keys. Therefore, Algorithm 2 is proposed to enhance the
randomness degree of the key bits and reduce matching odds of secret keys. The core idea is to increase the number of
0s found in the key. The newly proposed Algorithm 2works on changing some 1s into 0s in order to balance the number
of 1s and 0s inside the hardware key, and meanwhile, it keeps the original 0s generated by SRAM-PUF. Algorithm
2 runs on the end-user side. After buying a new equipment, the user scans the QR code and programs the device to
extract the key using the recorded addresses. As shown in Algorithm 2, the first step is to read the KeyCellAddresses
generated by the manufacturer. This array contains the highest reliable memory cells addresses. Those addresses are
used in generating the secret key by reading the corresponding memory values as shown in step 3. After that, the key
is corrected by using BCH and the helper data which is generated by Algorithm 1. After completing step 5, we will
get a correct and reliable hardware key. In the next steps, Algorithm 2 works on increasing the key uniqueness, so it
changes some 1s into 0s. The number of 1s which needs to be changed into 0s is stored in zerosConvertedNumber. This
number is equal to 28% of the keyLength according to the experiment results in this paper, after which the number of 0s
is going to be equal to the number of 1s. Because we are generating a 128-bit secret key, 36 bits get affected, and thus
zerosConvertedNumber is 36. The bit location of the affected cell is calculated by adding seedIndex to the last memory
address location where the algorithm arrives at. For the seedIndex, it should be not only random to be robust against
the outsider attacks, but also stable to enable the local device to obtain the same seedIndex whenever there is a need
to generate the same modified key. In addition, choosing the locations of converted 1s should not be the same for all
secret keys to avoid getting identical secret keys. To do that, seedIndex is calculated by getting the decimal equivalent
to the first 5 bits of each generated key. As shown in step 6, seedIndex is generated from the SVSCs which makes
it as a small SRAM-PUF output leading into reliable (the bits at the beginning of the key have the highest reliability
rates) and random (its value depends on the production process variations). Since seedIndex is a part of the generated
key, even if some of its bits flip, they will be corrected when running ECC algorithm to correct the generated key.
After we have generated the seedIndex, everything is ready to start the randomizing process. The location of the target
cell is stored in currentPos. Each target cell changes its value from 1 to 0. If the target cell already has 0 value, the
algorithm searches for the next nearest cell which has 1 value. Algorithm 2 keeps running until it finishes converting
zerosConvertedNumber cells. The final result after the completion of Algorithm 2 is a key where the number of 0s and
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Figure 2: Real SRAM Samples with Their Original and Modified Start-up Values Before and After Running the Transfor-
mation Algorithm

1s are the same.
3.2. Results and discussion

We program and run the algorithms on real ZigBee devices. As shown in Figure2, we first read the whole SRAM
memory and just show a part of the 1260 bits. The cells which tend to start with 1 are colored white, whereas the ones
which tend to start with 0 are colored black. We use the same starting address for all devices. Then we choose, for
the experiment, 144 bits by reading the same part of different memories. Before running Algorithm 2, most bits are
1s and thus many bits, compared with the ones of the same locations in other memories, are identical.

As shown in Figure2, "Original" is the name of a (12*12 bits) memory part before running the Algorithm 2, and
"Modified" is the name of the same (12*12 bits) memory part after running the Algorithm 2. The number of 0s in the
modified part increases, and we get less identical values of the cells compared with the ones of the same locations on
other memories. The seedIndex used in Algorithm 2 to choose the locations of the converted bits is different for each
memory section due to the SVSCs randomness. As shown in Figure2, it is 15, 26, 11, and 13 for SRAM1, SRAM2,
SRAM3 and SRAM4 respectively. Even in the case that there is the same generated index for two different devices,
the converted cells locations will not be the same after running the algorithm.

Algorithm 1 is needed to reduce the storage size of the helper data and to enhance the reliability degree of the
generated key. Since it runs on the manufacturer side, it does not add any overhead to the limited resource devices
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Table 2
key differences ratio

Keys number Original Modified

1000−10000000 34.39708852% 49.83605342%

Figure 3: Inter-HD of the Secret Keys Before/After Running Algorithm 2

which are ZigBee End Devices (ZEDs) in this paper. The manufacturer can provide the end user with the highest
reliable 128 cells’ addresses to build a secret key or with more 128-bit combinations to give the end user the choice to
choose any suitable secret key.

We also ran a simulation for generating secret keys randomly with the same real memory 0:1 ratio in order to
evaluate Algorithm 2. To do that, we generated files with 103, 104, 105, 106, and 107 secret keys using Python. Then,
we wrote a program to test the uniqueness of keys before and after running Algorithm 2. The inter-HD value was
almost the same in all files. As shown in Table 2 and Figure3, the inter-HD of original secret keys was 34.4% (the
dotted blue line), and after running the algorithm, the inter-HD had increased to 49.8% (the solid red line), which
means Algorithm 2 is working efficiently.

Comparing with the other researches which aimed to mitigate the bias problem in SVSCs, we were able to signifi-
cantly decrease the bias effect by applying two algorithms in software. The other researchers used hardware solutions
such as adding a current source or voltage bias to the SRAM circuit in order to neutralize SVSCs. However, in the case
of IoT and ZigBee devices, the software solution is more effective for two reasons; first, there is no need to change the
SRAM architecture to be able to benefit from the PUF features; second, those devices have microcontrollers and can
easily accept the software solution especially that Algorithm 2 is lightweight and runs only on the device booting.

4. Integrating SRAM-PUF with ZigBee Security System Model
As aforementioned in this paper, PUF can be used for securing ZigBee secret keys. When ZigBee network is

working in high-security mode, the TC will list the network devices with their master and link keys. In addition,
network devices will be pre-configured with at least a master key to be able to establish a link key and then securely
acquire the active NWK key. When a ZED is not pre-installed with a master key, the active NWK key will be sent in
plaintext to the newly joined device. If the plaintext NWK key is captured by an adversary, the whole network will be
threatened. Furthermore, when a device receives the NWK key or any other secret keys, the secret keys will be stored
in the NVM or in an external memory which also needs protection.

The process of deploying PUF in ZigBee architecture depends on what we are going to protect and in which way
the secret keys are acquired. Therefore, some typical scenarios and their implementations were illustrated, and then
PUF-based methods to generate pre-configured secret keys and protect the other secret keys stored in NVM were
proposed.
4.1. The first scenario: Pre-configured Key

All main secret keys, including the master, the link and the NWK keys, can be pre-installed on the ZEDs before
they are deployed in the network. There are two ways to pre-install the secret keys:
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Figure 4: Installing Pre-Configured Secret Keys in TC

• The first way is to use the ZED’s SRAM-PUF as a secret key which can be valid for both of the master and link
keys but not for the NWK key. That is because the master and the link keys keep unchanged during the runtime
whereas the NWK key can be updated. The master and the link keys belong to one pair of devices where each
device shares a master and a link keys with the TC or with another device for securing the unicast communication
between them.

• The second way is to generate the secret keys (master, link and NWK keys) by the network administrator and
then store them in NVM of TC and ZEDs. In this case, the secret keys should be protected and encrypted inside
the NVM using a hardware key generated by the SRAM-PUF of the local devices.

4.1.1. Using PUF in generating master or link key
There are two modes for the link key in ZigBee: global and unique. In the global link key mode, the TC stores one

link key which must be installed in all the network devices. For unique link key mode, each device has its own link
key, and the TC needs to store all these link keys of the ZigBee devices in its memory. Unique link key mode is more
secure especially in case one of the ZEDs is stolen and the link key gets compromised. This problem can be solved
by deleting the stolen device from the TC access list, and there is no need to take any further actions. Still, there is
a disadvantage of using the unique link key mode that the memory grows with the number of joined devices. In the
global link key mode, if the link key is obtained, the adversary will be able always to join the network unless the global
link key changes. Changing global link key requires reinstalling of new link key for all network devices. However,
PUF can be used in both cases regardless of the types of link keys. In unique link key mode, the link key between
the ZED and TC will be the SRAM-PUF output of the ZED. In the global link key mode, the global link key will be
the TC SRAM-PUF after the PUF output is remodeled using a Hash function or other algorithms. That is because the
PUF raw output should not be compromised to the outside world.

The TC of the ZigBee network as previously mentioned contains a list of devices and their secret keys. The
advantage of using SRAM-PUF as a device key is that when the device is powered off, there will be no key saved
which minimizes the time window for key extraction attacks. Moreover, producing SRAM exactly the same for the
purpose of obtaining the same SVSCs is impossible because SVSCs are random and cannot be controlled. Before
ZEDs leave the factory, Algorithm 1 will be executed and a secret key, or maybe multiple secret keys, with its helper
data will be generated. This key is the SRAM-PUF output of ZED, in other words, it is like a pre-installed key, so it
could be used as a master or link key for this ZED. The manufacturer will send the addresses of the key bits to the end
user using QR code, PIN code or any out-of-band communication method. As shown in Figure4, before installing the
ZigBee network, the administrator will read the master or link keys of the ZEDs (e.g. scan the QR code and generate
the key accordingly), add the ZEDs addresses and store them together in the TC access list.
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Figure 5: Protecting Secret Keys Stored Inside an External Memory

4.1.2. Using PUF in protecting the NWK key
The NWK key, on the other side, is used to protect all broadcast messages at the network layer level. It is a key

used by the whole network devices, so it cannot be correlated to devices physical characters, so PUF is not valid to
be used as NWK key. In addition, the NWK key can be updated during the runtime, so it is better to be saved in a
memory and being protected there. PUF can be used to protect the NWK key when it is stored in the NVM. As shown
in Figure5, the process is divided into two stages:

• Stage 1: 128-bit hardware key will be extracted using SRAM-PUF (or any other PUF types) from the local
ZED SRAM and then stored in the internal SRAM. After that, this extracted key will be used to encrypt the
pre-configured NWK key and store it in the NVM. Stage 1 is illustrated in Figure5 with dashed line.

• Stage 2: whenever the ZED needs to use the NWK key either for encrypting the outgoing frames or decrypting
the incoming frames, it needs to decrypt the stored encrypted NWK key using its own hardware key. Stage 2 is
illustrated in Figure5 with solid line.

By using this method, the secret key will always be protected. Even if some attacker was able to run side-channel
attacks and read the NVM content, he would not be able to obtain the real NWK key to endanger the network. The
encryption and decryption of the secret keys will not take a long time, especially that most of the ZigBee devices come
with dedicated-hardware for AES cyphering operations.
4.2. The second scenario: Transport-Key

Another way, specified by the ZigBee Alliance, for acquiring the secret keys is by sending the keys over the air
to ZEDs and then storing them in the memory of the receiving ZEDs. In the ZigBee networks where the ZEDs are
not configured with pre-installed link keys, the NWK key will be sent in plaintext, which is very dangerous for the
security of the ZigBee stack. However, in high secure ZigBee networks, the secret keys are protected using key-load
keys when transferring master or link key and using the key-transport key when transferring NWK key. In this case,
PUF cannot be used in generating the load-key or the transport-key key because, in ZigBee, both of them are derived
from the link key after running keyed HMAC. nevertheless, the link key from which the load-key and transport-key
key are derived could be the SRAM-PUF of the local device. In addition, PUF can be used for protecting the keys
after they are received and stored in the ZED’s NVM. The protection process is similar to protecting stored NWK key
in NVM discussed earlier in this paper and shown in Figure5.

An example of using the shared link key between TC and ZED is acquiring the transported NWK key in the secure
ZigBee network. As shown in Figure6, the newly joined ZEDs will ask the TC to send the active NWK key in order
to be able to communicate with the other devices within the network securely. TC will send the active NWK key
encrypted by the key-transport key which is derived from the link key of the joined device. The ZED will also re-
generate its own link key using the key generation represented by Algorithm 1 and Algorithm 2. Then, it will derive
a key-transport key for decrypting the incoming frame which carries the encrypted NWK key. After being obtained,
the active NWK key will be stored in the NVM after being encrypted using the local SRAM-PUF.
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Figure 6: Acquiring Transported Network Key

Figure 7: Generating Random Seed

4.3. Authentication and random number generators in ZigBee
Random numbers are required for ciphering and authentication operations in ZigBee. The authentication process

in ZigBee is done by using Mutual Symmetric-Key Entity Authentication. In this process, each of the paired devices
generates a random challenge and send it to the other paired device encrypted using the shared key. Despite these
challenges having a minimum length and a maximum length, the challenge values should be random and non-repeated.

Randomness in ZigBee is also used during the ciphering operations which are done by using AES-CCM*. When
encrypting the frame data, a generated random nonce is added to the frame data before the encryption process starts
in order to change the generated cipher output. According to the great significance of random numbers for ZigBee
security, ZigBee devices are usually provided with pseudo-random number generators. An example of random number
generators used by some companies for ZigBee devices is the use of a linear feedback shift register (LFSR). In CC2530,
which is used in this experiment, LFSR 16 bits is used. The only way to predict the output of the random number
generating algorithm is to guess LFSR seed (the initial value of the register). Some companies use the random data
from noise in the radio Analog-to-Digital Converter (ADC) as a seed. Nevertheless, PUF could be a good technique
for providing the register seed with a random and unpredictable value. Obviously, there are two methods to do that; the
first method is to use the neutral cells mentioned in section III whose reliability is near to 50%. Those cells are purely
random and could start as 0 or 1 differently every time the SRAM starts up. The only shortage in this method is that
the neutral cells represent just about 0.5% of the SRAM cells, and thus, the SRAM size required to obtain 16-bit length
seed with 100% pure randomness is 3200 bits. The second method to generate the 16-bit seed, as shown in Figure7, is
to read it out from SVSCs after passing through Algorithm 2 to minimize the biasing effect of SRAM-PUF as follows;
firstly, 16 memory addresses of the most unreliable cells will be chosen. Then, Algorithm 2 will run to randomize the
generated seed in case there are too many 1s. The seedIndex will be the first 3 bits, and the rest of the algorithm code
will run as normal after modifying the number of 1s which are going to be turned into 0s.

5. Conclusion
IoT data occupies a large part of the big data system sources, and protecting this data on the infrastructure level

is mandatory for the safety of the whole system. In this paper, we have presented PUF-based secret keys scheme to
secure the memories in ZigBee physical devices by providing random, reliable and real-time generated hardware keys.
PUF is considered a good solution for the devices with limited resources since it does not require any storage space and
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consumes little power to generate its output. In this paper, SRAM-PUF has been used for two reasons: firstly, SRAM
is already available in most of ZigBee devices, and thus, there is no need to install any new equipment. Secondly,
most ZigBee devices have limited resources with no effective method to protect their own secret keys. In order to
overcome the shortage in randomness of keys generated using SRAM-PUF and increase the reliability of these keys,
two algorithms have been proposed and tested. The results show that the reliability has been increased to 95.6% and the
Inter-HD of PUF-generated keys has been increased to 49.83%. As a result, SRAM-PUF can successfully be integrated
with ZigBee stack and improve the hardware security of its devices in term of producing a robust security system.
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